Your SlideShare is downloading. ×

Mischelleyadao

573

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
573
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. My Presentation
    by:MischelleYadao
  • 2. Hydrosphere
  • 3. Hydrosphere
    A hydrosphere (from Greekὕδωρ - hydor, "water" and σφαῖρα - sphaira, "sphere") in physical geography describes the combined mass of water found on, under, and over the surface of a planet.
    The total mass of the Earth's hydrosphere is about 1.4 × 1018tonnes, which is about 0.023% of the Earth's total mass. About 20 × 1012tonnes of this is in the Earth's atmosphere (the volume of one tonne of water is approximately 1 cubic metre). Approximately 75% of the Earth's surface, an area of some 361 million square kilometres (139.5 million square miles), is covered by ocean. The average salinity of the Earth's oceans is about 35 grams of salt per kilogram of sea water (35 ‰).[1]
  • 4. Hydrological Cycle
    Insolation, or energy (in the form of heat and light) from the sun, provides the energy necessary to cause evaporation from all wet surfaces including oceans, rivers, lakes, soil and the leaves of plants. Water vapor is further released as transpiration from vegetation and from humans and other animals.
    Aquifer drawdown or overdrafting and the pumping of fossil water increases the total amount of water in the hydrospherethat is subject to transpiration and evaporation thereby causing accretion in water vapour and cloud cover which are the primary absorbers of infrared radiation in the earth's atmosphere. Adding water to the system has a forcing effect on the whole earth system, an accurate estimate of which hydrogeological fact is yet to be quantified.
  • 5. The Water Cycle
  • 6. Water Pollution
    Water pollution is the contamination of water bodies (e.g. lakes, rivers, oceans and groundwater). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove harmful compounds.
    Water pollution affects plants and organisms living in these bodies of water; and, in almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities.
  • 7. Water pollution is a major global problem. It has been suggested that it is the leading worldwide cause of deaths and diseases,and that it accounts for the deaths of more than 14,000 people daily.An estimated 700 million Indians have no access to a proper toilet, and 1,000 Indian children die of diarrheal sickness every day. Some 90% of China's cities suffer from some degree of water pollution,and nearly 500 million people lack access to safe drinking water.In addition to the acute problems of water pollution in developing countries, industrialized countries continue to struggle with pollution problems as well. In the most recent national report on water quality in the United States, 45 percent of assessed streammiles, 47 percent of assessed lake acres, and 32 percent of assessed bay and estuarinesquare miles were classified as polluted.
  • 8.
  • 9. CAUSES OF POLLUTION
    Many causes of pollution including sewage and fertilizers contain nutrients such as nitrates and phosphates.  In excess levels, nutrients over stimulate the growth of aquatic plants and algae.  Excessive growth of these types of organisms consequently clogs our waterways, use up dissolved oxygen as they decompose, and block light to deeper waters. This, in turn, proves very harmful to aquatic organisms as it affects the respiration ability or fish and other invertebrates that reside in water.      Pollution is also caused when silt and other suspended solids, such as soil, washoff plowed fields, construction and logging sites, urban areas, and eroded river banks when it rains.  Under natural conditions, lakes, rivers, and other water bodies undergo Eutrophication, an aging process that slowly fills in the water body with sediment and organic matter.  When these sediments enter various bodies of water, fish respirationbecomes impaired, plant productivity and water depth become reduced, and aquatic organisms and their environments become suffocated.  Pollution in the form of organic material enters waterways in many different forms as sewage, as leaves and grass clippings, or as runoff from livestock feedlots and pastures.
  • 10.
  • 11. ADDITIONAL FORMS OF WATER POLLUTION
  • 12. Three last forms of water pollution exist in the forms of petroleum, radioactive substances, and heat.  Petroleum often pollutes waterbodies in the form of oil, resulting from oil spills.  The previously mentioned Exxon Valdez is an example of this type of water pollution.  These large-scale accidental discharges of petroleum are an important cause of pollution along shore lines.  Besides the supertankers, off-shore drilling operations contribute a large share of pollution.  One estimate is that one ton of oil is spilled for every million tons of oil transported.  This is equal to about 0.0001 percent. Radioactive substances are produced in the form of waste from nuclear power plants, and from the industrial, medical, and scientific use of radioactive materials.  Specific forms of waste are uranium and thorium mining and refining.  The last form of water pollution is heat.  Heat is a pollutant because increased temperatures result in the deaths of many aquatic organisms.  These decreases in temperatures are caused when a discharge of cooling water by factories and power plants occurs.
  • 13. CLASSIFYING WATER POLLUTION
    The major sources of water pollution can be classified as municipal, industrial, and agricultural.  Municipal water pollution consists of waste water from homes and commercial establishments.  For many years, the main goal of treating municipal wastewater was simply to reduce its content of suspended solids, oxygen-demanding materials, dissolved inorganic compounds, and harmful bacteria.  In recent years, however, more stress has been placed on improving means of disposal of the solid residues from the municipal treatment processes.  The basic methods of treating municipal wastewater fall into three stages: primary treatment, including grit removal, screening, grinding, and sedimentation; secondary treatment, which entails oxidation of dissolved organic matter by means of using biologically active sludge, which is then filtered off; and tertiary treatment, in which advanced biological methods of nitrogen removal and chemical and physical methods such as granular filtration and activated carbon absorption are employed.  The handling and disposal of solid residues can

×