Equazioni

3,028 views
2,903 views

Published on

1 Comment
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total views
3,028
On SlideShare
0
From Embeds
0
Number of Embeds
15
Actions
Shares
0
Downloads
24
Comments
1
Likes
0
Embeds 0
No embeds

No notes for slide

Equazioni

  1. 1. Problema: quanto tempo impiega un paracadutista “sfortunato” caduto da un aereo (3000m) a toccare terra? Non tutti i problemi si possono risolvere utilizzando una equazione di primo grado . . .
  2. 2. Equazioni di 2°grado Forma Canonica: ax 2 + bx + c = 0 (con a ≠ 0)
  3. 3. Le equazioni di 2°grado si dividono in: <ul><li>ax 2 +c = 0 </li></ul><ul><li>ax 2 +bx = 0 </li></ul><ul><li>ax 2 + bx + c = 0 </li></ul><ul><li>pure </li></ul><ul><li>spurie </li></ul><ul><li>complete </li></ul>
  4. 4. Risoluzione equazione 2°grado pura esempio: <ul><li>2x 2 – 32 = 0 </li></ul><ul><li>Trasportiamo il termine noto al secondo membro </li></ul><ul><li>2x 2 = 32 </li></ul><ul><li>Dividiamo entrambi i membri per il coefficiente 2 </li></ul><ul><li>x 2 = 16 </li></ul><ul><li>Calcoliamo la radice quadrata di entrambi i membri </li></ul><ul><li>X 1,2 = </li></ul>
  5. 5. Risoluzione equazione 2°grado pura in generale: <ul><li>ax 2 + c = 0 </li></ul><ul><li>Trasportiamo il termine noto al secondo membro </li></ul><ul><li>ax 2 = -c </li></ul><ul><li>Dividiamo entrambi i membri per il coefficiente a </li></ul><ul><li>x 2 = -c/a </li></ul><ul><li>Calcoliamo la radice quadrata di entrambi i membri </li></ul><ul><li>X 1,2 = </li></ul>
  6. 6. Considerando l’esempio precedente <ul><li>2x 2 – 32 = 0 </li></ul><ul><li>abbiamo: a = 2 e c = -32 </li></ul><ul><li>quindi: </li></ul><ul><li>X 1,2 = </li></ul>
  7. 7. Risoluzione equazione 2°grado spuria esempio: <ul><li>3x 2 + 10x = 0 </li></ul><ul><li>Raccogliamo a fattor comune la x al primo membro </li></ul><ul><li>X(3x + 10) = 0 </li></ul>Per la legge di annullamento del prodotto almeno uno dei due fattori deve essere nullo quindi: X 1 = 0 3x + 10 = 0 X 2 =-10/3
  8. 8. Risoluzione equazione 2°grado spuria in generale <ul><li>ax 2 + bx = 0 </li></ul><ul><li>Raccogliamo a fattor comune la x al primo membro </li></ul><ul><li>x(ax + b) = 0 </li></ul>Per la legge di annullamento del prodotto almeno uno dei due fattori deve essere nullo quindi: X 1 = 0 ax + b = 0 X 2 =-b/a
  9. 9. Considerando l’esempio precedente <ul><li>3x 2 – 10x = 0 </li></ul><ul><li>abbiamo: a = 3 e b = -10 </li></ul><ul><li>quindi: </li></ul><ul><li>X 1 = 0 </li></ul><ul><li>X 2 = </li></ul>
  10. 10. <ul><li>x 2 - 6x - 16 = 0 </li></ul><ul><li>Completiamo il quadrato i cui primi due termini sono x 2 - 6x </li></ul><ul><li>x 2 - 6x + 9 - 16 = 0 +9 </li></ul><ul><li>(x - 3) 2 = 25 </li></ul>Risoluzione equazione 2°grado completa x – 3 = 5 x 1 = 8 x 2 = -2 x – 3 = -5
  11. 11. Risoluzione equazione 2°grado completa <ul><li>ax 2 + bx + c = 0 </li></ul><ul><li>Moltiplichiamo entrambi i membri per 4a si ha: </li></ul><ul><li>4a 2 x 2 + 4abx + 4ac = 0 </li></ul><ul><li>Completiamo il quadrato i cui primi due termini sono 4a 2 x 2 + 4abx </li></ul><ul><li>4a 2 x 2 + 4abx + b 2 = +b 2 – 4ac </li></ul><ul><li>(2ax + b) 2 = b 2 – 4ac </li></ul><ul><li>2ax + b = </li></ul>
  12. 12. Considerando l’esempio precedente <ul><li>x 2 - 6x - 16 = 0 </li></ul><ul><li>abbiamo: </li></ul><ul><li>a = 1, b = -6 e c =-16 </li></ul><ul><li>quindi: </li></ul>
  13. 13. Considerazioni sulla formula <ul><li>b 2 -4ac si indica con Δ (discriminante) </li></ul>2 soluzioni distinte 2 soluzioni coincidenti Nessuna soluzione (reale) Δ > 0 Δ = 0 Δ < 0
  14. 14. Formula ridotta <ul><li>Se b è pari ovvero b = 2 β l’equazione diventa </li></ul><ul><li>ax 2 + 2 β x + c = 0 </li></ul><ul><li>e la formula </li></ul>
  15. 15. Relazione tra soluzioni (radici) e coefficienti <ul><li>Sommando le radici dell’equazioni si ottiene </li></ul>Moltiplicando le radici dell’equazioni si ottiene s p
  16. 16. <ul><li>Tornando all’equazione generale divisa per a abbiamo: </li></ul><ul><li>x 2 + (b/a)x + (c/a) = 0 </li></ul><ul><li>ovvero </li></ul><ul><li>x 2 - s x + p = 0 </li></ul><ul><li>dove </li></ul><ul><li>s e p rappresentano somma e prodotto delle radici </li></ul>
  17. 17. Test on-line http://www.matematicamente.it/test/test_equa2_cono.html http://www.matematicamente.it/test/test_equa2_appl.html teoria applicazione
  18. 18. esercizi <ul><li>Equazioni spurie; esercizi con risoluzione </li></ul><ul><li>http://www.ripmat.it/mate/a/af/afccgb.html </li></ul><ul><li>Equazioni pure; esercizi con risoluzione </li></ul><ul><li>http://www.ripmat.it/mate/a/af/afccga.html </li></ul><ul><li>Equazioni complete </li></ul><ul><li>http://www.fausernet.novara.it/~valsek/equazsec/Compl.htm#ricompl </li></ul><ul><li>http://www.matematicaeliberaricerca.com/ lezioni_free /equazioni/10_equaz_free.htm </li></ul>Foglio excel - formula -
  19. 19. <ul><li>fine </li></ul>

×