Your SlideShare is downloading. ×
The Potential of Grosmont Carbonates and the Path for Realizing It.
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

The Potential of Grosmont Carbonates and the Path for Realizing It.

1,403

Published on

Dr. Jen Russel-Houston and …

Dr. Jen Russel-Houston and
Dr. Jian-Yang Yuan
of Osum Oil Sands Corp.

Special thanks to:
The Osum Grosmont team
Petrel Robertson (Cornelius Rott)
TerraWRX
Laricina Grosmont Team

1 Comment
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total Views
1,403
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
59
Comments
1
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. The Potential of Grosmont Carbonates and the Path for Realizing It . Jen Russel-Houston and Jian-Yang Yuan [email_address] Thanks: Osum Grosmont Team Petrel Robertson (Cornelius Rott) TerraWRX Laricina Grosmont Team Photo: Madison Group, Mission Canyon Fm.
  • 2. Key Message
    • The Grosmont Formation carbonate rocks host a giant bitumen reservoir.
    • Modern insitu technologies for mapping and exploiting sandstone bitumen reservoirs are applicable to carbonate reservoirs.
    • Models suggest that SAGD/solvent will be commercially viable at Saleski.
  • 3. Presentation Outline
    • Ancient History
      • Devonian Carbonate Platform
      • Early Dolomitization
      • Jurassic – Cretaceous Karstification
      • Cretaceous – Tertiary Oil emplacement
    • Recent History
      • 1970s 80s Pilots (Buffalo Creek)
      • 2006-10; land rush, delineation wells, seismic, reservoir simulation.
    • The Future
      • Osum/Laricina SAGD and Solvent Pilot
    Photo: Madison Group, Mission Canyon Fm.
  • 4. Grosmont Formation: Estimated 406 Billion Barrels OIIP ERCB, ST98 report 2010. Devonian Reefs
  • 5. Devonian Reefs
  • 6. Blakey, R. 2010. http://www2.nau.edu/rcb7/globaltext2.html Late Devonian (360 Ma) Grosmont Platform and Devonian Reef Trends from wells.
  • 7. Bahamas Platform, photographic image from outer space by NASA Cutler, 1983
  • 8. Stratigraphy Grosmont Formation: Estimated 406 Billion Barrels OIIP ERCB, ST98 report 2010. Grosmont Devonian Reefs After Buschkuehle et al. 2007 and Cutler, 1983 A A ’ A A ’
  • 9. Saleski Area Base Map
    • 149 gross sections
    • (109 net sections)
    • Osum/Laricina Grosmont Pilot
    • SAGD/solvent
    • horizontal wells drilled from surface
  • 10.  
  • 11. Wabiskaw shale caprock
  • 12. Cutler, 1983 Depositional Model: shallow carbonate platform
  • 13. Diagenetic Model: reflux dolomitization, solution enhancement, and stratiform brecciation After Buschkuehle et al. 2007 and Machel and Huebscher, 2001 Hopkins and Barrett, 2009 Stratiform brecciation
  • 14. T P Grosmont A, Argillaceous limemudstone and stromatoporoid + amphipora floatstone I
  • 15. Grosmont A, Argillaceous limemudstone and stromatoporoid + amphipora floatstone Grosmont B, Argillaceous limemudstone T P I
  • 16. Grosmont B, Argillaceous limemudstone T P I
  • 17. Grosmont B, Stromatoporoid + amphipora floatstone Nodular limemudstone T P I
  • 18. Grosmont B, Nodular limemudstone Grosmont C, Argillaceous dolomudstone T P I
  • 19. Grosmont C, Argillaceous dolomudstone Nodular limemudstone (rare) Basal Seal T P I
  • 20. Grosmont C, Argillaceous massive dolomudstone Vuggy dolomudstone Production zone Ф = 0.12 So = 0.51 Sw =0.17 1- Sw = 0.83 Ф = 0.14 So = 0.74 Sw =0.08 1-Sw = 0.92 Ф = 0.21 So = 0.82 Sw =0.04 1-Sw = 0.96 T P I
  • 21. Grosmont C, Argillaceous massive dolomudstone Vuggy dolomudstone Vuggy dolomudstone, Grosmont C, facies 4, 00/07-08-085-18W4, 347.00 m. Plain-polarized light. Pore space in centre (stained with blue epoxy) represents a vug filled with bitumen that was removed during thin section preparation.
  • 22. Grosmont C, Vuggy dolomudstone Injection well location T P I
  • 23. Grosmont C, Vuggy dolomudstone Vuggy dolomudstone, Grosmont C, facies 4, 00/07-08-085-18W4, 342.90 m. Plain-polarized light. Pore space in lower left corner (stained with blue epoxy) represents part of a vug. subhedral, euhedral, finely to medium crystalline.
  • 24. Grosmont C, Sucrosic dolomudstone Laminated to massive dolomudstone Ф = 0.31 So = 0.94 Sw =0.02 1-Sw = 0.98 T P I
  • 25. Grosmont C, Laminated to massive dolomudstone T P I
  • 26. Grosmont D, Argillaceous dolomudstone Brecciated and laminated dolomudstone T P I
  • 27. AA/13-09-086-18W4, 249.40 m., Grosmont D, facies 6, Brecciated dolomudstone ("dolofudge"), Plain-polarized light. Uncleaned sample. Note extensive solution porosity and chaotic arrangement of anhedral dolomite in the matrix.
  • 28. AA/13-09-086-18W4, 249.40 m., Grosmont D, facies 6, Brecciated dolomudstone ("dolofudge"), Plain-polarized light. Uncleaned sample. Note extensive solution porosity and chaotic arrangement of anhedral dolomite in the matrix.
  • 29. Grosmont D Outcrop Analogue
    • Montana Belt Creek
    • Madison Group,
    • Mission Canyon Fm.
    • Greater than 10 meters thick
    • Paleosol with evidence of salt dissolution at the base.
    • Bedding still preserved within Intraformational breccia.
    • Correlatable along 15 km Belt Creek Valley.
  • 30. Grosmont D, FA6, brecciated and laminated facies ~ 12 m thick.
  • 31. 1 2 3 4 5
    • Madison Group, Lodgepole Fm.
    • 20 – 40 m thick carbonate mudstone to grainstone parasequence sets.
    • Correlatable along the Belt Creek Valley ~ 15 km.
  • 32. Grosmont D, Brecciated and laminated dolomudstone Laminated to massive dolomudstone T P I
  • 33. Dolomudstone, Grosmont D, facies 6, 00/07-08-085-18W4, 318.60 m. Plain-polarized light. In the highly porous part of this field of view, dolomite rhombs have been affected by intense leaching resulting in extremely high inter- and intracrystalline porosity
  • 34. Grosmont D, Laminated to massive dolomudstone T P I
  • 35. Grosmont D, Laminated to massive dolomudstone T P I
  • 36. Grosmont A Top Structure
    • Dips gently to the southwest.
    • Top of reservoir at 260-300 m TVD
    • Continuous reservoir (Grosmont C +D)
  • 37.  
  • 38. Grosmont C+D Net Pay (DPOR > 12%, Sw core < 50%)
  • 39. Presentation Outline
    • Ancient History
      • Devonian Carbonate Platform
      • Early Dolomitization
      • Jurassic – Cretaceous Karstification
      • Cretaceous – Tertiary Oil emplacement
    • Recent History
      • 1970s 80s Pilots (Buffalo Creek)
      • 2006-10; land rush, delineation wells, seismic, reservoir simulation.
    • The Future
      • Osum/Laricina SAGD and Solvent Pilot
    Photo: Madison Group, Mission Canyon Fm.
  • 40. Grosmont Formation First drilled in 1949 100/13-17-67-23W4 Described in 1952 by Helen Belyea. By-passed pay: hydrocarbon saturated rock that is unrecognized, uneconomic or technically not able to be produced at the time of discovery.
  • 41. Early Thermal Pilots
    • Vertical Wells
    • CSS, Steam drive, in situ combustion
    • Issues:
    • Karst Zones
    • Poor Seismic
    • Immature science,
      • High pressure, low quality steam
    • Operational issues
      • Fuel supply issues
      • Boiler reliability
      • Sediment handling
      • Inability to dispose of produced fluids.
  • 42.  
  • 43. Little Belt Mountains, Mission Canyon Fm. with cavern-fill breccias with clay from Kibbey Fm.
  • 44. Roadside Madison Group, Mission Canyon Fm. Subvertical fractures connect horizonally- oriented (bedding plane) dissolution enhanced high perm zones. 0.1 D error 1 D Lost core
  • 45.  
  • 46. Buffalo Creek Simulation
  • 47. Grosmont 2010
    • 3D seismic
    • Computer simulation of old pilots
    • Micro-resistivity Image log data
    • Modern laboratory tests (NMR, CAT scan)
      • Recovery factors 30-60%
      • Solvent can increase the RF and the rate.
      • Vugs, fractures, and matrix all contribute
  • 48. Grosmont 2010
    • 3D seismic
    • Computer simulation of old pilots
    • Micro-resistivity Image log data
    • Modern laboratory tests (NMR, CAT scan)
    • Experience in thermal development of clastic reservoirs with bitumen (not heavy oil).
      • Horizontal drilling
      • Advancements in well completions (liners, pumps)
      • SAGD, and more CSS experience.
  • 49. Grosmont 2010
    • 3D seismic
    • Computer simulation of old pilots
    • Micro-resistivity Image log data
    • Modern laboratory tests (NMR, CAT scan)
    • Experience in thermal development of clastic reservoirs with bitumen (not heavy oil).
    • Value of Bitumen
    WTI, annualized, inflation adjusted by CPI; after 2000 reduced, before 2000 inflated Early Grosmont Pilots
  • 50. Grosmont 2010
    • 3D seismic
    • Computer simulation of old pilots
    • Micro-resistivity Image log data
    • Modern laboratory tests (NMR, CAT scan)
    • Experience in thermal development of clastic reservoirs with bitumen (not heavy oil).
    • Value of Bitumen
    • Accessibility of the Grosmont
  • 51.
    • Belyea, H.R. 1952. Notes on the Devonian system of the north-central plains of Alberta Geol. Survey Canada, Paper 52. p. 27-66.
    • Buschkuehle, B. E., Hein, F. J., Grobe, M. 2007. An overview of the geology of the Upper Devonian Grosmont carbonate bitumen deposit, northern Alberta, Canada. Natural Resources Research, vol. 1, no. 1. p. 3-15.
    • Cutler, W. G. 1983. Stratigraphy and sedimentology of the Upper Devonian Grosmont Formation, Alberta, Canada: Can. Petroleum Geology Bulletin., vol. 31, no. 4, p. 282-325.
    • Machel, H. G. and Huebscher, H. 2000. The Devonian heavy oil reservoir in Alberta, Canada. Zentralblatt für Geologie und Paläontologie. Teil I. Vol 1/2. p. 55-84.

×