Guia no 1 clasificacion_comparacion y ordenamiento de numeros decimales

1,145 views
865 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,145
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
15
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Guia no 1 clasificacion_comparacion y ordenamiento de numeros decimales

  1. 1. NSTITUCION EDUCATIVA SAN ISIDRO LABRADOR TALLER EXPERIMENTAL DE MATEMATICAS PENSAMIENTOS NUMERICO METRICO VARIACIONAL ALEATORIO ESPACIAL FORMACION PARA DOCENTES PROFESOR ALCIDES SEGUNDO PAEZ SOTO TUTOR DEL PROGRAMA TODOS A APRENDER DEL MEN 2013
  2. 2. INSTITUCION EDUCATIVA SAN ISIDRO LABRADOR TALLER EXPERIMENTAL DE MATEMATICAS PENSAMIENTO NUMERICO VARIACIONAL GRADO 8° GUIA No.1. CLASIFICACION, COMPARACION Y ORDENAMIENTO DE NUMEROS DECIMALES PROF. ALCIDES SEGUNDO PAEZ SOTO INTRODUCCION Números reales Los números reales son los números que se puede escribir con anotación decimal, incluyendo aquellos que necesitan una expansión decimal infinita. El conjunto de los números reales contiene todos los números enteros, positivos y negativos; todos los fracciones; y todos los números irracionales -- aquellos cuyos desarrollos en decimales nunca se repiten. Ejemplos de números irracionales son √ 2 = 1.4142135623730951 . . . π = 3.141592653589793 . . . e = 2.718281828459045… ... Es muy útil representar a los números reales como puntos en la recta real, como mostrado aquí. Observe que los números más mayores aparecen a la derecha: Si a<b entonces el punto corresponde a b está a la derecha del punto que corresponde a a. 1. OBJETIVOS DEL EJERCICIO (Incluidos los temas a reforzar)  Diferenciar el conjunto de los números irracionales del conjunto de los números racionales.  Identificar el conjunto de los números irracionales y con aproximaciones lograr represar estos de distintas formas.  Integrar las diferentes representaciones decimales como modelos de los números reales.  Reconocer el conjunto de los números reales (R) como la unión de los conjuntos de los números racionales (Q) e irracionales (I). R=QUI  Identificar y usar los números reales en contextos numéricos y geométricos.  Comprender el significado de relación de orden entre números reales, racionales e irracionales. 2. CONCEPTOS PREVIOS NECESARIOS PARAEL DESARROLLO DE EJERCICIO ME PREPARO  Escribo cuatro ejemplos de decimales infinitos.  ¿Cuántos tipos de decimales infinitos conozco? Doy ejemplos.
  3. 3.  En la calculadora encuentro el valor de y  Sin calculadora hallo la expresión decimal correspondiente a ⅙.  Represento en la recta numérica los números a)0.25 b)-3/2 c)-0.75 d)2.164 e)0.3 f)0.333..  Ordeno de mayor a menor 0,2; 0,13; 0,013; 0,130; 0,31  ¿Cuántos números diferentes hay entre 0,31 y 0,32?  ¿Cuántas veces contiene la longitud la la unidad U ________ ude la figura 1.1? l ________________________________________ 3. PROBLEMA DIDACTICO Y EJERCICIOS A RESOLVER EN FORMA INDIVIDUAL (LOS PUNTOS DEL 1 AL 5) 1. En la siguiente figura aparecen cuatro cuadrados con su respectiva área. Hallo la longitud del lado de cada cuadrado y determino si el número decimal que representa la longitud es un racional oirracional. A = 64 cm2 A = 81 cm2 A = 144 cm2 A = 225 cm2 En los ejercicios del 2 al 5 selecciono la respuesta correcta 2. Los decimales que pueden escribirse en forma de fracción son: A. Los infinitos e infinitos periódicos B. Los infinitos periódicos únicamente C. Los infinitos no periódicos D. Todos los decimales 3. El número racional que representa la expresión decimal 0,11111,… es: A. 10/a C. 1/a B. 1/10 D. 11111/100000 4. La expresión decimal del número racional 25/7 es un: A. Decimal infinito periódico B. Decimal finito C. Decimal infinito no periódico D. Decimal finito periódico 5. La expresión decimal del número racional 1/11 es: A. 1,1 B. 1,1111,… C. 0,9999,… D. 0,090909… 6. Escribe en forma de fracción los números decimales y si es posible la fracción generatriz. A. 2,8 B. 6,98 C. 0,28 D. 1,07 E. 2,348
  4. 4. 7. Escribe el número decimal que representa cada suma de fracciones A. 9/10 + 9/100 + 9/1000 + 9/10.000 +… B. 2/10 + 2/100 + 2/1000 + 2/10.000 +… 8. Escribe como suma de fracciones decimales los números: A. 0,999 B. 0,83333;… C. 0,7555… D. 1,3333,… 9. Comprueba mediante la división, si las fracciones expresiones decimales periódicas: A. 2/7 B. 4/3 C. 3/22 D. 17/14 pueden representarse por TRABAJO PARA DESARROLLAR EN GRUPO (PUNTOS DEL 10 HASTA EL 15) 10. Dibujen 8 cuadrados de diferentes tamaños y tracen en cada uno las diagonales. Midan el lado y la diagonal de cada cuadrado y con los datos obtenidos completen la siguiente tabla: Cuadrado Longitud de la diagonal (d) en centímetros Longitud del lado (h) en centímetros d/h 1 2 3 4 11. Según la tabla anterior, respondan justificando la respuesta: A) ¿Qué tipo de decimal es el cociente entre d y h en cada cuadrado? B) ¿La longitud del cuadrado se puede escribir como aveces el lado donde aes un número racional? C) ¿Son medidas conmensurables la longitud de la diagonal de un cuadrado y la longitud de su lado? 12. Determino el número irracional que representa la longitud de la hipotenusa, en cada triangulo rectángulo: 5 a). b). c). 1 2 2 3 7 13. Dados los siguientes números reales
  5. 5. A) Calculo las raícesusando la calculadora B) Determino cuales son racionales y cuales son irracionales C) Ordeno de mayor a menor los números racionales D) Ubico en la recta numérica los números racionales e irracionales 14. Con ayuda de triángulos rectángulos construye un segmento de longitud a) cm b) cm c) d) 15. Encuentre un número que cumpla las condiciones A) Natural, menor que 11 y mayor que 9 B) Racional, mayor que 3,2 y menor que 4,001 C) Irracional, mayor que 2 y menor que 3 16. Escriba en el cuadro un número real que cumpla la condición A) 4,9 <<5,001 B) 0,4 <<0,5 C) 1,4142 <<1,4143 D) 3.1415 <<3,1415 4. MATERIALES PARA LA ACTIVIDAD DIDACTICA
  6. 6. Hojas de papel cuadriculadas, regla, escuadra, compas, guía con anexos sobre algunos conceptos básicos sobre numero reales: racionales e irracionales y calculadora 5. ANALISIS DE RESULTADOS DE LA ACTIVIDAD DIDACTICA, A TRAVES DE PREGUNTAS DIRIGIDAS O SUGERIDAS AL ESTUDIANTE 6. FORMA DE SOCIALIZACION DE LOS RESULTADOS DEL EJERCICIO Un representante de cada grupo expone a sus compañeros de clase, los avances, limitaciones, estrategias usadas para resolver al interior de su grupo las situaciones analizadas y los ejercicios de afianzamiento. 7. FORMA DE EVALUACION POR PARTE DEL DOCENTE DE LOS OBJETIVOS DEL EJERCICIO  Una individual de diagnostico inicial y otra al finalizar los conceptos asociados y relacionados que se verán en las próximas dos secciones de clases.  Otra grupal donde se tiene en cuenta el avance y la participación activa en cada una de las actividades asignadas en esta guía. 8. BIBLIOGRAFIA UTILIZADA Y RECOMENDADA  Camargo Uribe Leonor. ALFA 8 Serie de Matemáticas para educación básica secundaria y media vocacional. Editorial Norma 1.999 Bogotá Colombia  Martínez Rojas, MaríaSoledad. AMIGOS DE LAS MATEMATICAS 8 Editorial Santillana. Bogotá 2.006  Lineamientos curriculares del Ministerio de Educación Nacional 2006.
  7. 7. SITIOS DONDE PUEDES AMPLIAR Y ENCONTRAR MAS INFORMACIÓN SOBRE LOS DECIMALES http://www.vitutor.com/di/d/numeros_decimales.html Tipos de números decimales 1 Decimal exacto La parte decimal de un número decimal exacto está compuesta por una cantidad finita de términos. Ejemplo: 2 Periódico puro La parte decimal, llamada periodo, se repite infinitamente. Ejemplo: 3 Periódico mixto Su parte decimal está compuesta por una parte no periódica y una parte periódica o período. Ejemplo: 4 No exactos y no periódicos Hay números decimales que no pertenecen a ninguno de los tipos anteriores. Ejemplo:
  8. 8. Clasificación de números decimales a partir de la fracción Dada una fracción podemos determinar qué tipo de número decimal será, para lo cual, tomamos el denominador y lo descomponemos en factores. Si aparece sólo el 2, o sólo el 5, o el 5 y el 2, la fracción es decimal exacta. Ejemplo: Si no aparece ningún 2 ó ningún 5, la fracción es periódica pura. Ejemplo: Si aparecen otros factores además del 2 ó el 5, la fracción es periódica mixta. Ejemplo: Ordenar números decimales Da dos dos números decima les es menor: 1 El que tenga menor la parte entera . Ej emp lo: 3. 528 < 5. 00001 < 7.36 2 S i tienen la misma parte entera, el que tenga la menor parte decima l. Ej emp lo:
  9. 9. 3. 00001 < 3.36 < 3. 528 SITIOS DONDE PUEDES AMPLIAR Y ENCONTRAR MÁS INFORMACIÓN SOBRE LOS DECIMALES http://cprmerida.juntaextremadura.net/cpr/matematicas/aplicacion/matedecimales/menu.html http://www.smartick.es/matematicas/decimales.html#.Uo0bbsRLNH4 http://web.educastur.princast.es/cp/sabugo/recursos/recursos_mate.htm http://www.aula21.net/primera/matematicas.htm https://sites.google.com/site/primaria3ciclo/matematicas http://usalasticenmatematicas.wordpress.com/ http://paraprofesypadres.blogspot.com/p/recursos-primaria.html

×