• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Osimo crossover-opinionminingv3
 

Osimo crossover-opinionminingv3

on

  • 823 views

 

Statistics

Views

Total Views
823
Views on SlideShare
822
Embed Views
1

Actions

Likes
1
Downloads
1
Comments
0

1 Embed 1

https://www.linkedin.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Osimo crossover-opinionminingv3 Osimo crossover-opinionminingv3 Presentation Transcript

    • Opinion  mining  and  sen-ment   analysis   W3C  SEMINAR,  JUNE  19    2012   TH David  Osimo,  Tech4i2.com   www.crossover-­‐project.eu     #pmod  
    • THE  CHALLENGES    Making  sense  of  a  thousand  voices  across  different   pla:orms    Iden-fying  “good  ideas”    Reduce  uncertainty  on  possible  impact  of  policies  by   ge@ng  early  and  real-­‐-me  feedback  
    • POSSIBLE  SOLUTION    Argument  mapping  soCware  helps  organising  in  a  logical   way  these  policy  statements,  by  explicita-ng  the  logical   links  between  them..    Vo-ng  Advise  Applica-ons  help  voters  understanding   which  poli-cal  party  (or  other  voters)  have  closer   posi-ons  to  theirs.      Automated  content  analysis  helps  processing  large   amount  of  qualita-ve  data.    
    • STATE  OF  THE  ART  
    • ADVANCED  TOOLS  
    • FUTURE  CHALLENGES    Reduc-on  of  human  effort    The  detec-on  of  spam  and  fake  reviews,        The  limits  of  collabora-ve  filtering,  which  tends  to  iden-fy  most   popular  concepts  and  to  overlook  most  innova-ve  /  out  of  the  box   thinking      The  risk  of  a  filter  bubble  (pariser  2011)    The  asymmetry  in  availability  of  opinion  mining  soCware,  which  can   currently  be  afforded  only  by  organisa-ons  and  government,  but   not  by  ci-zens.  In  other  words,  government  have  the  means  today   to  monitor  public  opinion  in  ways  that  are  not  available  to  the   average  ci-zens.  While  content  produc-on  and  publica-on  has   democra-zed,  content  analysis  has  not.    The  integra-on  of  opinion  with  behaviour  and  implicit  data,  in  order   to  validate  and  provide  further  analysis  into  the  data  beyond   opinion  expressed    The  con-nuous  need  for  beTer  usability  and  user-­‐friendliness  of  the   tools,  which  are  currently  usable  mainly  by  data  analysts  
    • Current free Top Current research Short term future Long termtools market research future tools researchfiltering opinion Machine · Statistical + Semantic · Visual representation· Multilingualbased on rating; learning + analysis through · Audiovisual opinion audiovisualassessing human lexicon/corpus of words mining opinion miningsentiments based analysis with known sentiment · Real-time opinion · Usable, peer-on keywords; mining to-peer opinionvisual word for sentiment · Machine learning mining tools forcounting classification algorithms citizensArgument · Identification of policy · Natural language · Non-bipolarmapping and VAA opinionated material to interfaces assessment of be analysed · SNA applied to opinion · Computer-generated opinion and expertise · Automatic reference corpuses in · Bipolar assessment of irony detection political/governance opinions field · Multilingual reference · Visual mapping of corpora bipolar opinion · Recommendation · Identification of highly algorythms rated experts
    • COMMENT  THE  ROADMAP  hTp://www.crossover-­‐project.eu/ResearchRoadmap.aspx