Probiotics – Prebiotics
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Probiotics – Prebiotics

on

  • 622 views

Probiotics – Prebiotics Novel Strategies That May Prevent Neonatal Disease ...

Probiotics – Prebiotics Novel Strategies That May Prevent Neonatal Disease
by
Richard J. Schanler, M.D.
Schneider Children’s Hospital at North Shore, Manhasset, NY
and Albert Einstein College of Medicine, Bronx, NY
schanler@nshs.edu

Statistics

Views

Total Views
622
Views on SlideShare
622
Embed Views
0

Actions

Likes
0
Downloads
22
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • Intestinal homeostasis is maintained through a delicate balance between the commensal intestinal microflora and bacterial pathogens <br /> Toll-like receptors (TLR’s) located on the intestinal epithelia interact with both the commensal and pathogenic bacteria. With an intact TLR signaling pathway in the presence of commensal bacteria, homeostasis of the intestinal surface is maintained and robust repair in response to injury is also maintained. <br /> Interaction between TLR’s and pathogenic bacteria initiates a signaling pathway that results in intestinal injury <br /> Mouse knockout models with TLR2 and TLR4 knocked out, have increased susceptibility to intestinal injury. In addition, TLR agonists (ligands) such as lipoteichoic acid and lipopolysaccharide (LPS) actually prevent intestinal injury. <br /> Major Point: the presence of commensal organisms, not just the absence of possible pathogens, is important in maintaining intestinal integrity. <br /> This raises serious questions regarding the judicious use of broad-spectrum antibiotics in the NICU. This practice has a significant impact on altering the intestinal microflora of the preterm infant, and may increase their susceptibility to bacterial invasion through the GI tract and NEC. <br />

Probiotics – Prebiotics Presentation Transcript

  • 1. Probiotics – Prebiotics Novel Strategies That May Prevent Neonatal Disease Richard J. Schanler, M.D. Schneider Children’s Hospital at North Shore, Manhasset, NY and Albert Einstein College of Medicine, Bronx, NY schanler@nshs.edu February 2010
  • 2. Intestinal EcosystemIntestinal Ecosystem  Host cellsHost cells  NutrientsNutrients  MicrofloraMicroflora  Interactions with nutrients and cellsInteractions with nutrients and cells  Adult colon and distal small intestineAdult colon and distal small intestine  10101313 microorganisms, 500 speciesmicroorganisms, 500 species  Normal bacterial flora affect immune functionNormal bacterial flora affect immune function  Stimulate mucosal IgA productionStimulate mucosal IgA production  Influence gene expressionInfluence gene expression  Activate toll-like receptors to protect against gut injuryActivate toll-like receptors to protect against gut injury 10 trillion10 trillion
  • 3. Newborn Intestinal Flora  Colonization in 12 to 24 hours  Enterobacteria, E. coli  Enterococci  Anaerobes  Formula-fed infants  Same as above  Bifidobacteria  Breastfeeding infants  Bifidobacteria and Lactobacilli compete with above  Premature infants delayed colonization of commensal microflora  Antibiotics  Delayed feeding  Sterile environment
  • 4. Some of the Intestinal MicrofloraSome of the Intestinal Microflora Identified in Infants are BeneficialIdentified in Infants are Beneficial  BifidobacteriumBifidobacterium  LactobacillusLactobacillus  StaphylococcusStaphylococcus  StreptococcusStreptococcus  BacteroidesBacteroides  ClostridiumClostridium  EscherichiaEscherichia  EnterococcusEnterococcus  VellonellaVellonella  PropionibacteriumPropionibacterium  BacillusBacillus  EubacteriumEubacterium  B. adolescentisB. adolescentis  B. bifidumB. bifidum  B. breveB. breve  B. catenulatumB. catenulatum  B. globosumB. globosum  B. infantisB. infantis  B. longumB. longum  B. suisB. suis  L. caseiL. casei  L. salivariusL. salivarius  L. gasseriL. gasseri  L. planarumL. planarum  L. fermentumL. fermentum
  • 5. Functions of Commensal MicroorganismsFunctions of Commensal Microorganisms  Probiotic speciesProbiotic species  Infection protectionInfection protection  Competition with pathogensCompetition with pathogens  Substrates, receptorsSubstrates, receptors  BacteriocinsBacteriocins  MetabolismMetabolism  Fermentation, SCFA, vitaminsFermentation, SCFA, vitamins  Conversion of procarcinogensConversion of procarcinogens  Immune responseImmune response  IgA synthesisIgA synthesis  Interaction with intestinal immune systemInteraction with intestinal immune system  Growth facilitated by oligosaccharidesGrowth facilitated by oligosaccharides  Human milkHuman milk  ““Prebiotics”Prebiotics”
  • 6. Intestinal HomeostasisIntestinal Homeostasis Jesse N, Neu J 2006; Lin 2008 Commensal bacteria reduce inflammatory signaling in intestinal epithelium via inhibition of NF-κB pathway.
  • 7. Carbohydrate FermentationCarbohydrate Fermentation  Major function of intestinal bacteriaMajor function of intestinal bacteria  Bifidobacteria and lactobacilliBifidobacteria and lactobacilli  ferment carbohydrate to produce lactic acidferment carbohydrate to produce lactic acid  Acidic milieu potentiates nonpathogenicAcidic milieu potentiates nonpathogenic bacteriabacteria  ColiformsColiforms  ferment carbohydrate to COferment carbohydrate to CO22 and waterand water  neutral pHneutral pH
  • 8. Stool pH: Indicator of Normal Gut Fermentation 4.8 5 5.2 5.4 5.6 5.8 6 3rd Day 1st Month 2nd Month 3rd Month 4th Month Breastfed Formula-Fed Indrio et al. Pediatr Res 2007; 62:98
  • 9. Approaches to Create IntestinalApproaches to Create Intestinal Microflora Like Breastfed InfantMicroflora Like Breastfed Infant Two possible approaches:Two possible approaches: 1.1. ProbioticsProbiotics  Feed live microorganismsFeed live microorganisms 2.2. PrebioticsPrebiotics  Provide food for the beneficial bacteriaProvide food for the beneficial bacteria FAO/WHO Working Group: Guidelines for the Evaluation of Probiotics in Food. 2002: URL:http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/index.html.
  • 10. ProbioticsProbiotics
  • 11. ProbioticsProbiotics  1900s Elie Metchnikoff, Pasteur Institute1900s Elie Metchnikoff, Pasteur Institute  ““Long life span of Bulgarian peasantsLong life span of Bulgarian peasants due to ingestion of fermented milksdue to ingestion of fermented milks containing large numbers ofcontaining large numbers of nonpathogenic bacteria”nonpathogenic bacteria”
  • 12. ProbioticsProbiotics  Antonym to the term ‘antibiotics’Antonym to the term ‘antibiotics’  Live, nonpathogenic bacterial micro-organismsLive, nonpathogenic bacterial micro-organisms  Colonize host intestineColonize host intestine  Bolster natural host defensesBolster natural host defenses  TypesTypes  LactobacillusLactobacillus  BifidobacteriumBifidobacterium  SaccharomycesSaccharomyces  Streptococcus thermophilusStreptococcus thermophilus
  • 13. Characteristics of an Ideal ProbioticCharacteristics of an Ideal Probiotic  Stable to acids & bile saltsStable to acids & bile salts  Adhesive to intestinal epithelial cellsAdhesive to intestinal epithelial cells  NoninvasiveNoninvasive  NonpathogenicNonpathogenic  Immuno-stimulatoryImmuno-stimulatory  Not pro-inflammatoryNot pro-inflammatory  Antagonistic to pathogensAntagonistic to pathogens  Sensitive to usual antibioticsSensitive to usual antibiotics  Doesn’t develop resistanceDoesn’t develop resistance  Originate from human microfloraOriginate from human microflora
  • 14. Probiotics Enhance Host DefenseProbiotics Enhance Host Defense  Prevent colonization by pathogenic organismsPrevent colonization by pathogenic organisms  Competition for nutrientsCompetition for nutrients  Competition for attachment sitesCompetition for attachment sites  Produce antibacterial compounds unfavorable toProduce antibacterial compounds unfavorable to pathogenspathogens  Volatile fatty acidsVolatile fatty acids  Modified bile acidsModified bile acids  Recruit immune cellsRecruit immune cells  Activate immune and inflammatory responsesActivate immune and inflammatory responses
  • 15. Probiotics Enhance Gut Barrier FunctionProbiotics Enhance Gut Barrier Function  Intestine is largest immune organ in the bodyIntestine is largest immune organ in the body  Large surface barrierLarge surface barrier  Gut permeabilityGut permeability  TranslocationTranslocation  Passage of intestinal bacteria through intestinal mucosaPassage of intestinal bacteria through intestinal mucosa  To extra-intestinal sitesTo extra-intestinal sites  Intestinal mucosal barrierIntestinal mucosal barrier  Physical, cellular barrierPhysical, cellular barrier  Major role in development of NECMajor role in development of NEC  Lactic acid bacteria [Probiotic]Lactic acid bacteria [Probiotic]  Do not translocateDo not translocate  Prevent translocation of other bacteriaPrevent translocation of other bacteria  Produce antimicrobial bacteriocinsProduce antimicrobial bacteriocins
  • 16. Probiotics Improve Enteral NutritionProbiotics Improve Enteral Nutrition  Improve mucosal integrityImprove mucosal integrity  Increase mucous secretionIncrease mucous secretion  Enhance GI motilityEnhance GI motility  Aid in intestinal maturationAid in intestinal maturation  Improve feeding toleranceImprove feeding tolerance  Metabolize noxious substancesMetabolize noxious substances  Produce protective nutrientsProduce protective nutrients  Arginine, glutamine, short chain fatty acidsArginine, glutamine, short chain fatty acids  Synthesize vitamin KSynthesize vitamin K
  • 17. How do Probiotics Work?How do Probiotics Work?  Competitive exclusionCompetitive exclusion  Direct effectDirect effect  ↑↑ bacteriocidal factorsbacteriocidal factors  ↑↑ mucin productionmucin production  ↓↓ pHpH  Epithelial barrierEpithelial barrier  ↓↓ bacterial translocationbacterial translocation  ↓↓ antigen translocationantigen translocation  Anti-inflammatoryAnti-inflammatory  ↑↑ IL-10IL-10  ↓↓ ubiquinationubiquination  ↓↓ IL-8IL-8  ↓↓ tumor necrosis factor (TNF)tumor necrosis factor (TNF)  InflammationInflammation  ↑↑ IgAIgA  ↑↑ IL-6IL-6  ↑↑ NK call activityNK call activity  ↑↑ phagocytosisphagocytosis  ↑↑ ββ-defensin-2-defensin-2  ↑↑ Innate immunityInnate immunity  Mannose receptorsMannose receptors  Toll-like receptorsToll-like receptors  TR-2: gm+TR-2: gm+  TR-4: gm-TR-4: gm-
  • 18. Probiotics and Antibiotic-Associated DiarrheaProbiotics and Antibiotic-Associated Diarrhea  Children 6 mo – 10 yChildren 6 mo – 10 y  US midwestUS midwest  Oral antibiotics x 10 dOral antibiotics x 10 d  RandomizationRandomization  Supplement x1/daySupplement x1/day  Lactobacillus GG, 1-2 x10Lactobacillus GG, 1-2 x1099  PlaceboPlacebo  Diarrhea incidenceDiarrhea incidence  Lactobacillus: 7 cases (8%)Lactobacillus: 7 cases (8%)  Placebo: 25 cases (26%)Placebo: 25 cases (26%)  Diarrhea durationDiarrhea duration  Lactobacillus: 4.7 daysLactobacillus: 4.7 days  Placebo: 5.9 daysPlacebo: 5.9 days Vanderhoof, J Pediatr 1999; 135:564 Stool Consistency Log
  • 19. Probiotics Reduce Diarrhea in Children:Probiotics Reduce Diarrhea in Children: Five Meta-AnalysesFive Meta-Analyses No. trialsNo. trials No. subjectsNo. subjects OutcomeOutcome #1:#1: 2323 1,9001,900  risk diarrhearisk diarrhea >3 days>3 days #2#2 99 765765  duration: 0.7 dduration: 0.7 d #3#3 1313 1,1131,113  duration: 0.8 dduration: 0.8 d #4#4 55 619619  duration: 1.1 dduration: 1.1 d #5#5 88 988988  duration: 1.1 dduration: 1.1 d 1 H. Szajewska & J. Mrukowicz JPGN 2001;33:S17-S25 2 C. Van Niel et al. Pediatrics 2002;109:S678-684 3 J. Huang et al. Dig Dis Sci 2002;1:2626-2634 4 H. Szajewska et al. APT 2007;25:257-264 5 H. Szajewska et al. APT 2007;25:871-881
  • 20. Necrotizing EnterocolitisNecrotizing Enterocolitis  GI catastropheGI catastrophe  PrematurityPrematurity  Bacterial floraBacterial flora  Reduction in commensal bacteriaReduction in commensal bacteria  More pathogenic than nonpathogenicMore pathogenic than nonpathogenic  Immature intestineImmature intestine  Impaired mucosal barrier functionImpaired mucosal barrier function  Increased GI permeabilityIncreased GI permeability
  • 21. Rationale for Probiotics in NECRationale for Probiotics in NEC  Lactobacilli and Bifidobacteria have low rates ofLactobacilli and Bifidobacteria have low rates of spontaneous colonization in breastfed infants <1500 gspontaneous colonization in breastfed infants <1500 g  Probiotics reduce pathogenic bacterial colonizationProbiotics reduce pathogenic bacterial colonization  Multiple courses of antibioticsMultiple courses of antibiotics  Abnormal NICU floraAbnormal NICU flora  Microbial etiologies in NECMicrobial etiologies in NEC  Reinforce intestinal barrierReinforce intestinal barrier  Prevent bacterial translocationPrevent bacterial translocation  Alleviate intestinal inflammationAlleviate intestinal inflammation  Balance of anti- and pro-inflammatory cytokinesBalance of anti- and pro-inflammatory cytokines
  • 22. Probiotics and NEC - Animal StudiesProbiotics and NEC - Animal Studies  Bifidobacteria vs controlBifidobacteria vs control  Rat modelRat model  Gut colonization by 24 hoursGut colonization by 24 hours  Asphyxia/hypothermia model for NECAsphyxia/hypothermia model for NEC  Reduction in NEC with probioticsReduction in NEC with probiotics  Bifidobacteria 30%Bifidobacteria 30%  Control 70%Control 70%
  • 23. Probiotics and Premies – JapanProbiotics and Premies – Japan  Randomized, controlled trial, JapanRandomized, controlled trial, Japan  VLBW infants, N=91VLBW infants, N=91  Bifidobacterium breveBifidobacterium breve supplement vs controlsupplement vs control  Supplement groupSupplement group  Higher fecal colonization of bifidobacteria at 2 wkHigher fecal colonization of bifidobacteria at 2 wk  73 % vs 12%73 % vs 12%  Tolerated more milk feedingTolerated more milk feeding  Fewer gastric residualsFewer gastric residuals  Improved overall feeding toleranceImproved overall feeding tolerance  Improved weight gainImproved weight gain Kitajima, Arch Dis Child 1997;76:F101
  • 24.  Probiotic year, n=1237 infantsProbiotic year, n=1237 infants  Infloran:Infloran:  2.5 x 102.5 x 1088 Lactobacillus acidophilusLactobacillus acidophilus  2.5 x 102.5 x 1088 Bifidobacteria infantisBifidobacteria infantis  Historical controls, n=1282 infantsHistorical controls, n=1282 infants  Prior year data on morbidityPrior year data on morbidity Probiotics and Premies - BogotaProbiotics and Premies - Bogota Hoyos, Int J Inf Dis 1999; 3:197Hoyos, Int J Inf Dis 1999; 3:197
  • 25.  ResultsResults  NEC incidenceNEC incidence  Probiotic year: 37/1237Probiotic year: 37/1237 →→ 3%3%  Historical control year: 85/1282Historical control year: 85/1282 →→ 6.6%6.6%  NEC mortality – significant differenceNEC mortality – significant difference  Probiotic yearProbiotic year →→ 14 cases14 cases  Historical control yearHistorical control year →→ 35 cases35 cases Probiotics and Premies - BogotaProbiotics and Premies - Bogota Hoyos, Int J Inf Dis 1999; 3:197Hoyos, Int J Inf Dis 1999; 3:197
  • 26. Probiotics and Premies - ItalyProbiotics and Premies - Italy  Double blind, 12 centers in ItalyDouble blind, 12 centers in Italy  Infants < 33 wk or < 1500 grams; n=585Infants < 33 wk or < 1500 grams; n=585  Mean BW 1335 g, GA 31 wks; 64% rec’d human milkMean BW 1335 g, GA 31 wks; 64% rec’d human milk  Lactobacillus GGLactobacillus GG supplementsupplement (Dicoflor, Dicofarm, IT)(Dicoflor, Dicofarm, IT) vs controlvs control  Once daily (6 x 10Once daily (6 x 1099 ) from onset feeding to discharge) from onset feeding to discharge  Supplementation for ~50 daysSupplementation for ~50 days  Supplement ControlSupplement Control  UTIUTI 3.4%3.4% 5.8%5.8% nsns  NECNEC 1.4 %1.4 % 2.7%2.7% nsns  SepsisSepsis 4.4 %4.4 % 3.8 %3.8 % nsns Dani, Biol Neonate 2002; 82:103
  • 27. Probiotics and Premies - IsraelProbiotics and Premies - Israel  Randomized, double-blind studyRandomized, double-blind study  Daily supplement, first feed to 36 wk corrected ageDaily supplement, first feed to 36 wk corrected age  ABC Dophilus (Solgar, Israel)ABC Dophilus (Solgar, Israel)  Bifidobacteria infantisBifidobacteria infantis 0.35 x 100.35 x 1099 cfu/daycfu/day  Bifidobacteria bifidusBifidobacteria bifidus 0.35 x 100.35 x 1099 cfu/daycfu/day  Strep thermophilusStrep thermophilus 0.35 x 100.35 x 1099 cfu/daycfu/day  Power analysisPower analysis  n=145 for reduction in NEC from 15% to 5%n=145 for reduction in NEC from 15% to 5% Bin-Nun et al, J Pediatr 2005;147:192-6
  • 28. Probiotics ControlProbiotics Control Probiotics and Premies - IsraelProbiotics and Premies - Israel Birth weight (g)Birth weight (g) 11521152 11111111 Gestation (wk)Gestation (wk) 29.829.8 29.329.3 SGA (%)SGA (%) 2525 1515 Sepsis (%)Sepsis (%) 4343 3333 nsns Antibiotics (d)Antibiotics (d) 12.512.5 14.914.9 Full feeding (d)Full feeding (d) 14.614.6 17.517.5 TPN discontinued (d)TPN discontinued (d) 16.616.6 18.618.6 Human milk exclusive (%)Human milk exclusive (%) 5858 6464 Partial human milk (%)Partial human milk (%) 1717 1212 Formula (%)Formula (%) 2525 2323 NPO (d)NPO (d) 5.25.2 4.84.8 All differences are not significant Bin-Nun et al, J Pediatr 2005;147:192-6
  • 29. Probiotics, Premies, NEC - IsraelProbiotics, Premies, NEC - Israel Probiotics ControlProbiotics Control P valueP value †† Bell stage of NEC 1-3 All differences are significantBell stage of NEC 1-3 All differences are significant Bin-Nun et al, J Pediatr 2005;147:192-6Bin-Nun et al, J Pediatr 2005;147:192-6 NEC cases (n, %)NEC cases (n, %) 3 (4%)3 (4%) 12 (16%)12 (16%) 0.030.03 Stage at diagnosisStage at diagnosis†† 1.31.3 2.32.3 0.0050.005 NEC or death (n, %)NEC or death (n, %) 6 (8%)6 (8%) 17 (23%)17 (23%) 0.0250.025
  • 30. Probiotics, Premies, & NEC - TaiwanProbiotics, Premies, & NEC - Taiwan  Randomized, controlled, blinded trial, infants <1500 gramsRandomized, controlled, blinded trial, infants <1500 grams  Mean 1100 g, ~28 wksMean 1100 g, ~28 wks  Probiotic: InfloranProbiotic: InfloranTMTM with breastmilk twice daily, n=180with breastmilk twice daily, n=180  Lactobacillus acidophilusLactobacillus acidophilus  Bifidobacteria infantisBifidobacteria infantis  Control group: breastmilk only, n=187Control group: breastmilk only, n=187  Breastmilk: either mother’s own or donor human milkBreastmilk: either mother’s own or donor human milk Lin et al, Pediatrics 2005;115:1-4
  • 31. Probiotics, Premies, & NEC - TaiwanProbiotics, Premies, & NEC - Taiwan Probiotics ControlProbiotics Control PP valuevalue Death, n (%)Death, n (%) 7 (3.9)7 (3.9) 10 (10.7)10 (10.7) .009.009 NEC or Death cases, n (%)NEC or Death cases, n (%) 9 (5)9 (5) 24 (12.8)24 (12.8) .009.009 NEC, stage 2 or 3, n (%)NEC, stage 2 or 3, n (%) 2 (1.1)2 (1.1) 10 (5.3)10 (5.3) .04.04 Sepsis, n (%)Sepsis, n (%) 22 (12.2)22 (12.2) 36 (19.3)36 (19.3) .03.03 NEC or sepsis, n (%)NEC or sepsis, n (%) 24 (13.3)24 (13.3) 46 (24.6)46 (24.6) .03.03 NEC, sepsis, or death, n (%)NEC, sepsis, or death, n (%) 31 (17.2)31 (17.2) 60 (32.1)60 (32.1) .009.009 Lin et al, Pediatrics 2005;115:1-4
  • 32. Probiotics, Premies, & NEC – Taiwan IIProbiotics, Premies, & NEC – Taiwan II  Randomized, controlled, masked trial, infants 500-1500 gRandomized, controlled, masked trial, infants 500-1500 g  MulticenterMulticenter  Mean birth weight 1100 g, n=217 per groupMean birth weight 1100 g, n=217 per group  Breastmilk or mixed dietBreastmilk or mixed diet  Intervention: InfloranIntervention: InfloranTMTM with milk twice daily x 6 wkwith milk twice daily x 6 wk  Lactobacillus acidophilusLactobacillus acidophilus 101099  Bifidobacteria infantisBifidobacteria infantis 101099  Control groupControl group Lin H-C et al, Pediatrics 2008;122:693-700
  • 33. Probiotics, Premies, & NEC – Taiwan IIProbiotics, Premies, & NEC – Taiwan II Probiotics ControlProbiotics Control PP valuevalue Birth weight (g)Birth weight (g) 10291029 ± 246± 246 10771077 ±± 214214 .03.03 Death or NEC cases, n (%)Death or NEC cases, n (%) 4 (1.8)4 (1.8) 20 (9.2)20 (9.2) .002.002 NEC, stageNEC, stage >> 2, n (%)2, n (%) 4 (1.8)4 (1.8) 14 (6.5)14 (6.5) .02.02 Sepsis, n (%)Sepsis, n (%) 40 (19.8)40 (19.8) 24 (11.5)24 (11.5) .04.04 Gram Positive, n (%)Gram Positive, n (%) 25 (11.5)25 (11.5) 19 (8.8)19 (8.8) NSNS Gram Negative, n (%)Gram Negative, n (%) 15 (6.9)15 (6.9) 5 (2.3)5 (2.3) .037.037 Lin H-C et al, Pediatrics 2008;122:693-700 Adjusted Odd’s Ratio for NEC or Death: 5.6 (1.8 – 17.9) Adjusted for birth weight, surfactant, pH, gestational age, site Adjusted Odd’s Ratio for Sepsis: 0.63 (0.35 - 1.10) Adjusted for birth weight, umbilical catheters, ventilation, NICU stay, site
  • 34. Probiotics and Time to Full FeedingsProbiotics and Time to Full Feedings WMD = weighted mean difference, probiotic - control Probiotic therapy shortens time to full feeding, P = 0.02 Deshpande G, Rao S, Patole S. Lancet 2007; 369:1614-1620 ProbioticsProbiotics ControlControl WMD (95% CI)WMD (95% CI) Kitajima 2007Kitajima 2007 4545 1717 ±± 8.48.4 4646 20.5 ± 11.920.5 ± 11.9 -3.9 (-7.7, 0.7)-3.9 (-7.7, 0.7) Bin Nun 2005Bin Nun 2005 7272 14.614.6 ± 8.7± 8.7 7373 17.5 ± 13.617.5 ± 13.6 -2.9 (-6.6, 0.8)-2.9 (-6.6, 0.8) ManManzoni 2006zoni 2006 3939 1515 ±± 88 4141 1717 ±± 99 -2 (-5.7, 1.7)-2 (-5.7, 1.7) TOTALTOTAL 156156 160160 -2.7 (-5, -0.5)-2.7 (-5, -0.5)
  • 35. Probiotics, Premies, & NECProbiotics, Premies, & NEC  BogotaBogota 6.66.6 →→ 3%3%  Lactobacillus acidophilusLactobacillus acidophilus  Bifidobacteria infantisBifidobacteria infantis  ItalyItaly 2.72.7 →→ 1.4% ns1.4% ns  Lactobacillus GGLactobacillus GG  TaiwanTaiwan 5.35.3 →→ 1.1%1.1% 6.56.5 →→ 1.8%1.8%  Lactobacillus acidophilusLactobacillus acidophilus  Bifidobacteria infantisBifidobacteria infantis  IsraelIsrael 1616 →→ 4 %4 %  Bifidobacteria infantisBifidobacteria infantis  Bifidobacteria bifidusBifidobacteria bifidus  Streptococcus thermophilusStreptococcus thermophilus Randomized trials
  • 36. Meta-Analysis Probiotics & NECMeta-Analysis Probiotics & NEC ProbioticsProbiotics ControlControl RR (95% CI)RR (95% CI) NECNEC >> Stage IIStage II 13/63713/637 37/62737/627 0.32 (0.17, 0.60)0.32 (0.17, 0.60) All MortalityAll Mortality 16/60116/601 39/60639/606 0.43 (0.25, 0.75)0.43 (0.25, 0.75) NEC-Related Mortality*NEC-Related Mortality* 0/3670/367 5/3635/363 0.17 (0.02, 1.37)0.17 (0.02, 1.37) SepsisSepsis 61/64761/647 97/63797/637 0.93 (0.73, 1.19)0.93 (0.73, 1.19) No differences in hospital days, parenteral nutrition days, or weight gain AlFaleh KM, Bassler D. Cochrane Database of Systematic Reviews 2008 *p = 0.03 by Fisher
  • 37. Probiotics & MortalityProbiotics & Mortality RR = relative risk Probiotic group had lower overall mortality, p = 0.0007 Deshpande G, Rao S, Patole S. Lancet 2007; 369:1614-1620 ProbioticsProbiotics ControlControl RR (95% CI)RR (95% CI) Kitajima 1997Kitajima 1997 0/450/45 2/462/46 0.20 (0.01, 4.14)0.20 (0.01, 4.14) Dani 2002Dani 2002 12/29512/295 22/29022/290 0.54 (0.27, 1.06)0.54 (0.27, 1.06) Bin Nun 2005Bin Nun 2005 3/723/72 9/739/73 0.34 (0.10, 1.20)0.34 (0.10, 1.20) Lin 2005Lin 2005 7/1807/180 20/18720/187 0.36 (0.16, 0.84)0.36 (0.16, 0.84) Manzoni 2006Manzoni 2006 5/395/39 6/416/41 0.88 (0.29, 2.64)0.88 (0.29, 2.64) TOTALTOTAL 27/63127/631 59/63759/637 0.47 (0.30, 0.73)0.47 (0.30, 0.73) Lin 2008Lin 2008 2/2172/217 9/2179/217
  • 38. Proposed Strategies for Preventing NECProposed Strategies for Preventing NEC  Human milk feedingHuman milk feeding 1515  Enteral antibioticsEnteral antibiotics 1111  Fluid restriction [judicious]Fluid restriction [judicious] 1212  Enteral IgG and IgAEnteral IgG and IgA 1515  Antenatal steroidsAntenatal steroids 5454  Delayed or slow feedingDelayed or slow feeding not efficaciousnot efficacious  Enteral IgG onlyEnteral IgG only not efficaciousnot efficacious  ProbioticsProbiotics  Lactobacillus GGLactobacillus GG 7777  Infloran (2 organisms)Infloran (2 organisms) 2424  Infloran (2 organisms)Infloran (2 organisms) 2121  Infloran (2 organisms)Infloran (2 organisms) 2020  ACDophilus (3 organisms)ACDophilus (3 organisms) 88 StrategyStrategy Number Needed To TreatNumber Needed To Treat Adapted from Bell, Pediatrics 2005;115:173 24
  • 39. Probiotics: Unanswered IssuesProbiotics: Unanswered Issues  TypeType  Which organism or combination of organisms?Which organism or combination of organisms?  DosageDosage  Duration of therapyDuration of therapy  Frequency of dosingFrequency of dosing  SafetySafety  Short-termShort-term  Long-termLong-term  Mechanism of actionMechanism of action  Combination with human milkCombination with human milk  Combinations with prebioticsCombinations with prebiotics
  • 40. Potential ComplicationsPotential Complications  InfectionInfection  SepsisSepsis  MeningitisMeningitis  Soft tissueSoft tissue  EndocarditisEndocarditis  Dental cariesDental caries  Acquired bacterial resistanceAcquired bacterial resistance
  • 41. LactobacillusLactobacillus SepsisSepsis  Compromised infant hostsCompromised infant hosts  Multiple courses of antibioticsMultiple courses of antibiotics  A. Developed secondary diarrhea, treated withA. Developed secondary diarrhea, treated with Lactobacillus GGLactobacillus GG  Within 3 weeks of continued treatmentWithin 3 weeks of continued treatment  patients developed feverpatients developed fever  systemic symptoms of sepsissystemic symptoms of sepsis  gram positive anaerobic non-spore forming rodsgram positive anaerobic non-spore forming rods  isolated from bloodisolated from blood  sensitive to penicillin [gentamicin for synergy]sensitive to penicillin [gentamicin for synergy]  B. Other cases NOT associated with probiotic therapyB. Other cases NOT associated with probiotic therapy Land et al, Pediatrics 2005;115:178 Thompson, J Perinatol 201;21:258
  • 42. Boyle, et al. AJCN, 2005
  • 43. What to do before multicenter trial  Dose response in animals  Evaluate inflammatory pathways in animals  Evaluate comparative efficacies in animals  Evaluate live, heat killed and bacterial products for safety and efficacy
  • 44. PrebioticsPrebiotics
  • 45. PrebioticsPrebiotics  Nondigestible, food ingredientsNondigestible, food ingredients  Not absorbedNot absorbed  Stimulate growth of beneficial fecal microflora, to improve healthStimulate growth of beneficial fecal microflora, to improve health  Act as substrates for probioticsAct as substrates for probiotics  ExamplesExamples  Oligosaccharides (from human milk)Oligosaccharides (from human milk)  Act to increase bifidobacteria (bifidogenic effect)Act to increase bifidobacteria (bifidogenic effect)  Inhibit intestinal binding of pathogenic bacteriaInhibit intestinal binding of pathogenic bacteria  Receptor analogues for glycoconjugates on intestinal surfacesReceptor analogues for glycoconjugates on intestinal surfaces  Mediate cell to cell interactionMediate cell to cell interaction  Bind humoral mediatorsBind humoral mediators  Modulate signal transferModulate signal transfer  Bind viruses and bacteriaBind viruses and bacteria Kunz 1999, Newburg 2000, Coppa 1997, Brand-Muller 1998
  • 46. Oligosaccharides: 3rd Most Common Component in Mature Human Milk 0 10 20 30 40 50 60 70 Lactose Fat Oligosaccharides Protein Upper Range of Concentration Lower Range of Concentration g/L Adapted from Kunz et al, Clin Perinatol 1999;26:307
  • 47. Human Milk OligosaccharidesHuman Milk Oligosaccharides  Colostrum – highest concentrationColostrum – highest concentration  Mature milk – lower contentMature milk – lower content  Contain galactose, glucose, N-acetylglucosamine, fucose,Contain galactose, glucose, N-acetylglucosamine, fucose, sialic acidsialic acid  Highly variable molecular structureHighly variable molecular structure  Genetic variationGenetic variation  A,B,AB blood typesA,B,AB blood types  Lewis blood groupLewis blood group
  • 48. Human Milk OligosaccharidesHuman Milk Oligosaccharides  Receptor analogues for glycoconjugates on epithelial andReceptor analogues for glycoconjugates on epithelial and endothelial cell surfacesendothelial cell surfaces  Mediate cell to cell interactionMediate cell to cell interaction  Bind humoral mediatorsBind humoral mediators  Modulate signal transferModulate signal transfer  Bind viruses and bacteriaBind viruses and bacteria  HMO found in infant stoolsHMO found in infant stools  Fermentation productsFermentation products Kunz 1999, Newburg 2000, Coppa 1997, Brand-Muller 1998
  • 49. Currently Available PrebioticsCurrently Available Prebiotics  Oligosaccharides (Not of Human Milk origin)Oligosaccharides (Not of Human Milk origin)  LactuloseLactulose  Galacto-oligosaccharides (GOS)Galacto-oligosaccharides (GOS)  Fructo-oligosaccharides (FOS)Fructo-oligosaccharides (FOS)  InulinInulin  Isomalto-oligosaccharidesIsomalto-oligosaccharides  Soybean oligosaccharidesSoybean oligosaccharides  LactosucroseLactosucrose  Gluco-oligosaccharidesGluco-oligosaccharides  Xylo-oligosaccharidesXylo-oligosaccharides
  • 50. Oligosaccharides GOS and FOS differ from HMO. HMO contain lactose at their reducing end. They can be elongated with n = 0-15 lactosamine units and can be modified with 1 or more fucose residues in various linkages and/or carry N- acetylneuraminic acid in various linkages. Galactooligosaccharides (GOS) and Fructooligosaccharides (FOS) are polymers of galactose and fructose, respectively. Fructose is not naturally found in human milk. N-acetylneuraminic acid and fucose, which are abundant constituents of HMO and maybe be important for some HMO functions, are not part of GOS or FOS. OligosaccharidesOligosaccharides
  • 51. Stool Microflora After 6 wks Feeding Formula with/without Oligosaccharides BIF EC CLOS ENT % 0 10 20 30 40 50 60 70 Formula without Oligosaccharides Knoll, 2003; microflora by FISH analyses; Oligo supplement was FOS and GOS BIF=Bifidobacteria, EC=E. coli, CLOS=Clostridium, ENT=Enterobacteria **All differences significant, p < 0.05 Formula with Oligosaccharides * * * *
  • 52. Effect of Prebiotics on Stool pH Breastfed Prebiotic Control Formula 5.9 6 6.1 6.2 6.3 6.4 6.5 pH Scholtens, J Nutr 2008; 138:1141 analyses at 26 wks of study Differences in pH: Prebiotic vs Control, p < 0.05
  • 53. Prebiotics Increase Fecal IgA Breastfed Prebiotic Control Formula µg/g feces 0 1000 Scholtens, J Nutr 2008; 138:1141 significant differences at 26 wks of study *Prebiotic vs Control, p < 0.05 *
  • 54. Prebiotics Affect Infant GI TractPrebiotics Affect Infant GI Tract  271 infants studied271 infants studied  4 treatments4 treatments  BreastfedBreastfed  Standard formulaStandard formula  Formula with GOS (2.4 g/L)Formula with GOS (2.4 g/L)  Breastfed and added GOS (2.4 g/L)Breastfed and added GOS (2.4 g/L)  Stool characteristicsStool characteristics  Softer, more frequent stoolsSofter, more frequent stools  ToleranceTolerance  Crying, spit-up, vomiting not affectedCrying, spit-up, vomiting not affected Ben XM et al. Chin Med J (English). 2004;117(6):927-931
  • 55. GOS/FOS (9:1) Decreased Episodes of Infection and Fever in Infants Prebiotic Formula (GOS:FOS, 9:1), n=66 Control Formula, n=68 * 0 1 2 3 4 5 6 Overal Infections URTI Infections treated with antibiotics Fever episodes * * *p < 0.01 Number of Episode s per Infant High risk atopic disease. Hydrolysate formula with GOS&FOS 8 g/L, Intervention Birth to 6 months; follow-up to 2 years Arslanoglu S, et al. J Nutr 2008;138:1091-1095
  • 56. GOS/FOS (9:1) Decreased Incidence of Allergic Manifestations * * * CumulativeIncidence(%) High risk atopic disease. Hydrolysate formula with GOS&FOS 8 g/L, Intervention Birth to 6 months; Follow-up to 2 years Arslanoglu S, et al. J Nutr 2008;138:1091-1095 0 5 10 15 20 25 30 Atopic Dermatitis Recurrent Wheezing Allergic Urticaria Prebiotic Formula (GOS:FOS, 9:1), n=66 Control Formula, n=68 *p < 0.05
  • 57.  2/7 studies2/7 studies →→ reported ‘allergy outcome’ for 432 infantsreported ‘allergy outcome’ for 432 infants  Infants at high risk of allergy fed hydrolyzed formula;Infants at high risk of allergy fed hydrolyzed formula; significant reduction in eczema up to 6 months of age (2006)significant reduction in eczema up to 6 months of age (2006)  (RR 0.42, 95% CI 0.21, 0.84)(RR 0.42, 95% CI 0.21, 0.84)  Formula fed non-selected infants; no significant difference inFormula fed non-selected infants; no significant difference in eczema up to 4 months of ageeczema up to 4 months of age  (RR 1.62, 95% CI 0.62, 4.26)(RR 1.62, 95% CI 0.62, 4.26)  Meta-analysis of the 2 studies: NS in eczemaMeta-analysis of the 2 studies: NS in eczema  Analysis of 5 studies: no adverse effects on infant growthAnalysis of 5 studies: no adverse effects on infant growth Prebiotics For Prevention of Allergic Disease and Food Hypersensitivity in Infants Osborn DA, Sinn JK. Prebiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database of Systematic Reviews 2007, Issue 4.
  • 58. Prebiotics in InfantsPrebiotics in Infants  Softer stoolsSofter stools  Increase friendly bacteriaIncrease friendly bacteria  BifidobacteriaBifidobacteria  Simulate the gut flora similar to breastfed infantsSimulate the gut flora similar to breastfed infants  Reduced infection rate?Reduced infection rate?  Reduced allergy?Reduced allergy?  More data neededMore data needed  May have important effects in newbornsMay have important effects in newborns  No data on efficacy in premature infantsNo data on efficacy in premature infants
  • 59. SummarySummary  Commensal micro-organisms are important forCommensal micro-organisms are important for neonatal healthneonatal health  Breastfed infant modelBreastfed infant model  SurrogatesSurrogates  ProbioticsProbiotics  risk vs benefitsrisk vs benefits  PrebioticsPrebiotics  safetysafety  evidence?evidence?