Anterior Glenohumeral Instability

11,888 views

Published on

Overview of anterior glenohumeral instability.

Published in: Health & Medicine
1 Comment
6 Likes
Statistics
Notes
  • helo DR.MILLITT is der by any chance i could email you pls...
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
11,888
On SlideShare
0
From Embeds
0
Number of Embeds
515
Actions
Shares
0
Downloads
598
Comments
1
Likes
6
Embeds 0
No embeds

No notes for slide

Anterior Glenohumeral Instability

  1. 1. Anterior Glenohumeral Instability Upper Extremity Rounds St. Michael’s Hospital March 2004
  2. 2. Objectives <ul><li>Epidemiology </li></ul><ul><li>Natural History </li></ul><ul><li>Pathoanatomy </li></ul><ul><li>Diagnosis </li></ul><ul><ul><li>History, Physical Exam, Imaging </li></ul></ul><ul><li>Management Options </li></ul><ul><ul><li>Consideration, Indications, Complications </li></ul></ul><ul><li>Surgical Procedures </li></ul><ul><li>Cases </li></ul>
  3. 3. Introduction <ul><li>Incidence – 2% over lifetime - Hovelius (CORR 1982); Simonet (CORR 1984) </li></ul><ul><li>Anterior dislocations account for ~95% of shoulder dislocations </li></ul><ul><li>Typically occurs in athletes who are < 25 years old </li></ul><ul><li>Males are much more commonly affected than are females (85-90%) </li></ul><ul><li>Pathology most commonly found in shoulders following a dislocation is a Bankart lesion </li></ul><ul><ul><li>Disruption of the labrum and the contiguous anterior band of the inferior glenohumeral ligamentous complex (IGHLC) </li></ul></ul><ul><li>Bankhart lesion occurs > 85% of the time </li></ul>
  4. 4. Mechanism of Injury <ul><li>Most common mechanism of injury is a fall onto an outstretched arm </li></ul><ul><li>Extremity is typically in an externally rotated and abducted position </li></ul><ul><ul><li>Places the anterior structures at greatest risk for failure (especially the inferior glenohumeral ligament) </li></ul></ul><ul><li>Other mechanisms: </li></ul><ul><ul><li>elevation combined with external rotation </li></ul></ul><ul><ul><li>direct blow </li></ul></ul>
  5. 5. Classification <ul><li>Instability can be classified by: </li></ul><ul><ul><li>direction of instability (anterior, posterior, multidirectional) </li></ul></ul><ul><ul><li>degree of instability (subluxation, dislocation) </li></ul></ul><ul><ul><li>etiology (traumatic, atraumatic, overuse) </li></ul></ul><ul><ul><li>timing (acute, recurrent, fixed) </li></ul></ul><ul><li>TUBS and AMBRI (Matsen) </li></ul><ul><li>TUBS or “Torn Loose” </li></ul><ul><ul><li>T raumatic aetiology, U nidirectional instability, B ankart lesion is the pathology, S urgery is required </li></ul></ul><ul><li>AMBRI or “Born Loose” </li></ul><ul><ul><li>A traumatic: minor trauma, M ultidirectional instability may be present, B ilateral: asymptomatic shoulder is also loose, R ehabilitation is the treatment of choice, I nferior capsular shift: surgery required if conservative measures fail </li></ul></ul>
  6. 6. Prognostic variables <ul><li>Gender – No correlation if look at <30 yrs of age group </li></ul><ul><li>Hand dominance - No correlation c onsistently reported </li></ul><ul><li>Initial Trauma - Controversial whether amount of initial trauma correlates with recurrence </li></ul><ul><li>Sports participation - Likely that level and type of sport participation correlates with recurrence rate </li></ul><ul><li>Initial X-ray Appearance – GT # low rate </li></ul><ul><li>Period of immobilsation – Unclear whether period of immobilization corrrelates with recurrence rate </li></ul><ul><li>Age – Strong correlation between age and recurrence in all studies </li></ul>
  7. 7. Age & Recurrence Rate <ul><li>McLaughlin and Cavallaro (Am J Surg 1950) </li></ul><ul><ul><li>573 patients - 90% in patients < 20 y, 60% in patients 20-40 y, only 10% in patients > 40 y </li></ul></ul><ul><li>Rowe (Orthop Clin North Am 1980) </li></ul><ul><ul><li>94% in patients < 20 y, 74% in patients 20-40 y </li></ul></ul><ul><li>Henry and Genung (Am J Sports Med 1982) </li></ul><ul><ul><li>121 patients - 88% regardless of type of nonoperative treatment </li></ul></ul><ul><li>Simonet and Cofield (Am J Sports Med 1984) </li></ul><ul><ul><li>116 patients - 66% in patients < 20 y, 40% in patients 20-40 y </li></ul></ul><ul><li>Arciero et al (Am J Sports Med 1984) </li></ul><ul><ul><li>80% in 15 student-athletes with average age of 20 y </li></ul></ul>
  8. 8. Natural History <ul><li>Bilaterality - <30 y at time of first dislocation </li></ul><ul><ul><li>18% bilaterality within 10 yrs (Hovelius, JBJS 1996) </li></ul></ul><ul><li>Osteoarthritis - Risk of OA regardless of recurrence or surgery at 10 y </li></ul><ul><ul><li>mod. to severe 9% (Hovelius, JBJS 1996) </li></ul></ul><ul><ul><li>mild 11% </li></ul></ul><ul><ul><li>17% (Lill, Chirurg 1998) </li></ul></ul><ul><li>Functional Disability (Tsai et al, Am J Sports Med 1991) </li></ul><ul><ul><li>~ 60% of patients with anterior instability complained of poor strength, decrease range of motion, increased pain after conservative treatment </li></ul></ul>
  9. 9. Anatomy <ul><li>humeral head is retroverted 30 o </li></ul><ul><li>typical neck-shaft angle is 130 o </li></ul><ul><li>glenoid fossa average radius of curvature is 24 mm, only 2 mm less than humeral head </li></ul><ul><li>less than one-third of the humeral head articulates with glenoid during any given position of rotation </li></ul><ul><li>glenohumeral articulation is minimally constrained by bony anatomy alone </li></ul><ul><li>glenoid labrum is a fibrocartilaginous structure </li></ul><ul><ul><li>functionally deepens the glenoid fossa </li></ul></ul><ul><ul><li>serves as an anatomic restraint to humeral head translation </li></ul></ul><ul><ul><li>provides an anchor point for the glenohumeral ligaments </li></ul></ul><ul><li>stability is conferred by a series of dynamic and static soft tissue restraints </li></ul>
  10. 10. Shoulder Stabilisers - Static <ul><li>Intracapsular pressure </li></ul><ul><li>Suction effect: glenoid labrum acting on humeral head like a “plunger” </li></ul><ul><li>Adhesion-cohesion: between 2 wet smooth surfaces </li></ul><ul><li>Glenoid version </li></ul><ul><li>Humeral retroversion: normal 21-30º, some studies have shown a significant reduction in patients with recurrent anterior dislocation   </li></ul><ul><li>Labrum: “chock block” to humeral head movement, increases depth of the glenoid by 50% </li></ul><ul><li>Ligaments – main static restraints </li></ul><ul><ul><li>Coracohumeral ligament </li></ul></ul><ul><ul><li>Superior glenohumeral ligament (SGHL) </li></ul></ul><ul><ul><li>Middle glenohumeral ligament (MGHL) </li></ul></ul><ul><ul><li>Inferior glenohumeral ligament complex (IGHLC) – “hammock” </li></ul></ul><ul><ul><li>Posterosuperior capsule </li></ul></ul>Primary static stabilizer limiting anterior movement of the shoulder in 90 degrees of abduction is the IGHL complex
  11. 11. Shoulder Stabilisers - Dynamic <ul><li>Rotator cuff </li></ul><ul><ul><li>Subscapularis muscle provides stability at lower degrees of abduction but contributes little when shoulder is in 90 o abduction </li></ul></ul><ul><ul><li>Rotator cuff compresses humeral head into glenolabral socket, contributing stability, esp. in middle ROM when ligaments are lax </li></ul></ul><ul><li>Proprioception </li></ul><ul><ul><li>Lephart et al 1994 studied proprioception in three groups of patients: Normal, Unstable, Reconstructed shoulders </li></ul></ul><ul><ul><li>Proprioception was significantly reduced in unstable shoulders but returned to near normal in reconstructed shoulders </li></ul></ul><ul><li>Long head of biceps: biceps is much more active in patients with recurrent dislocation </li></ul>
  12. 12. Pathophysiology <ul><li>pathologic lesions leading to the unstable shoulder can be divided into two main groups: </li></ul><ul><ul><li>anterior labrum </li></ul></ul><ul><ul><li>glenohumeral capsule </li></ul></ul>
  13. 13. Anterior Labrum <ul><li>Bankart lesion </li></ul><ul><ul><li>classically described as the detachment of the anteroinferior labrum with its attached inferior glenohumeral ligament complex </li></ul></ul><ul><li>Initially felt that this detachment was the “essential lesion” </li></ul><ul><li>Speer et al. </li></ul><ul><ul><li>Created Bankhart lesion from 12 o’clock to 6 o’clock and found minimal translation (<4 mm) </li></ul></ul><ul><ul><li>Capsular injury also required to dislocate shoulder </li></ul></ul>
  14. 14. Glenohumeral Capsule <ul><li>Turkel 1981 </li></ul><ul><ul><li>Selective cutting study showed importance of GH ligaments </li></ul></ul><ul><li>Bigliani et al. 1992 </li></ul><ul><ul><li>Cadaveric bone-ligament-bone specimens of the IGHL were created and tested to failure </li></ul></ul><ul><ul><li>found that ligament failed </li></ul></ul><ul><ul><ul><li>off the glenoid in 40% of the specimens (Bankart) </li></ul></ul></ul><ul><ul><ul><li>intrasubstance in 35% </li></ul></ul></ul><ul><ul><ul><li>off the humeral side in 25% </li></ul></ul></ul><ul><ul><li>Most importantly showed that the capsule underwent plastic deformation prior to failure in all specimens </li></ul></ul>
  15. 15. Pathoanatomy <ul><li>Supraspinatus tear </li></ul><ul><li>Subscapularis avulsion </li></ul>Rotator cuff (13%) <ul><li>Tear of the lig. insertion (HAGL) </li></ul><ul><li>Greater tuberosity fracture </li></ul><ul><li>Hill-Sachs lesion (77%) </li></ul>Humerus <ul><li>Bankart tear </li></ul><ul><li>Posterior labral tear (10%) </li></ul><ul><li>SLAP tear </li></ul>Labrum <ul><li>Bony Bankart (4%) </li></ul><ul><li>Glenoid fracture </li></ul><ul><li>Glenoid dysplasia </li></ul>Glenoid <ul><li>Bankart lesion </li></ul><ul><li>Capsular stretching </li></ul><ul><li>Congenital laxity </li></ul><ul><li>Wide rotator interval </li></ul>Capsule
  16. 16. Patient History <ul><li>Mechanism of injury is critical in management of dislocated shoulder </li></ul><ul><li>Arm position at time of injury helpful in subtle forms of subluxation </li></ul><ul><ul><li>if the patient complains of symptoms in the cocking position, anterior subluxation </li></ul></ul><ul><ul><li>if the symptoms occur in the follow-through phase, posterior subluxation </li></ul></ul><ul><li>Identify the amount of force required </li></ul><ul><li>Number of dislocations suffered by the patient </li></ul><ul><li>Age at the time of first dislocation is extremely important </li></ul><ul><ul><li>most important prognostic indicator for patients with recurrent dislocations. </li></ul></ul>
  17. 17. Exam - Acute Instability <ul><li>Patients present with severe pain with arm held at side </li></ul><ul><li>Normal contour of deltoid and acromion are usually lost </li></ul><ul><li>Visual inspection, palpation, strength testing and a thorough neurovascular examination </li></ul><ul><li>Specific neurologic testing should include pre-reduction evaluation of axillary, musculocutaneous, median, ulnar, and radial nerves. </li></ul><ul><li>Sensation over axillary nerve distribution (lateral aspect of the shoulder) has proven to be quite unreliable. </li></ul><ul><li>Isometric contraction of 3 deltoid heads (anterior, middle, and posterior), usually indicates an intact axillary nerve. </li></ul>
  18. 18. Exam - Recurrent Instability <ul><li>Apprehension test </li></ul><ul><li>Anterior release </li></ul><ul><li>Anteroposterior translation </li></ul><ul><ul><li>Grade 1+ translation to the glenoid rim </li></ul></ul><ul><ul><li>Grade 2+ the head subluxes beyond the rim but self-reduces when the force is released </li></ul></ul><ul><ul><li>Grade 3+ the head dislocates and does not spontaneously reduce </li></ul></ul><ul><li>Sulcus </li></ul><ul><li>Ligamentous laxity </li></ul>
  19. 19. Imaging <ul><li>Acute Setting </li></ul><ul><li>a true anteroposterior (AP) view, trans-scapular Y view, and axillary view should be obtained to determine the direction of the dislocation </li></ul><ul><li>Radiographs should be performed before reduction is attempted unless </li></ul><ul><ul><li>the direction of dislocation is known from prior dislocations </li></ul></ul><ul><ul><li>the reduction is performed by an experienced physician, trainer, or other health care worker. </li></ul></ul><ul><li>Post-reduction radiographs should confirm that the reduction was successful and that there are no acute fractures </li></ul>
  20. 20. Imaging <ul><li>Recurrent Instability </li></ul><ul><li>Several special views may be more helpful with recurrent instability </li></ul><ul><li>AP radiograph in internal rotation, Stryker-notch views are used to visualize Hill-Sachs lesion </li></ul><ul><li>West Point axillary view used to visualize anteroinferior glenoid (Bankart), avoids superimposition of the coracoid process & clavicle </li></ul>
  21. 21. Intra-articular lidocaine vs. IV sedation for closed reduction? <ul><li>Miller et. al. J Bone Joint Surg Am. 2002 Dec;84-A(12):2135-9. </li></ul><ul><li>prospective, randomized study, skeletally mature patients, isolated glenohumeral joint dislocation </li></ul><ul><li>IV sedation or intra-articular lidocaine, modified Stimson method </li></ul><ul><li>30 patients </li></ul><ul><ul><li>lidocaine group (n=15) - significantly less time in ER (av. time, 75 min vs 185 min in the sedation group, p < 0.01) </li></ul></ul><ul><ul><li>no significant difference between groups with regard to pain (p = 0.37), success of Stimson technique (p = 1.00), or time required to reduce shoulder (p = 0.42) </li></ul></ul><ul><ul><li>cost of IV sedation was $97.64/patient vs $0.52 for intra-articular lidocaine </li></ul></ul><ul><li>Use of intra-articular lidocaine to facilitate reduction with the Stimson technique </li></ul><ul><ul><li>safe and effective method </li></ul></ul><ul><ul><li>less money, time, and nursing resources </li></ul></ul>
  22. 22. <ul><li>Orlinsky et. al. J Emerg Med. 2002 Apr;22(3):241-5. </li></ul><ul><li>compare the analgesic effectiveness of intra-articular lidocaine versus intravenous meperidine and diazepam </li></ul><ul><li>Prospective randomized trial </li></ul><ul><li>54 patients with anterior shoulder dislocations </li></ul><ul><li>29 intra-articular lidocaine (IAL) </li></ul><ul><li>25 intravenous meperidine/diazepam (IVMD) </li></ul><ul><li>IAL less effective than IVMD in relieving pre-reduction pain (p = 0.045) </li></ul><ul><li>IAL equally effective in overall pain relief (p = 0.98) </li></ul><ul><li>IAL was more effective than IVMD in shortening recovery time (p = 0.025) </li></ul><ul><li>IVMD trend towards physician-perceived muscle relaxation and patient's perception of analgesia adequacy </li></ul>
  23. 23. <ul><li>Kosnik et. Al. Am J Emerg Med. 1999 Oct;17(6):566-70. </li></ul><ul><li>prospective, randomized, nonblinded clinical trial </li></ul><ul><li>local intraarticular lidocaine injection (IAL) vs intravenous analgesia/sedation (IVAS) </li></ul><ul><li>Level 1, trauma center </li></ul><ul><li>49 patients: 20 - IVAS group, 29 - IAL group </li></ul><ul><li>No difference between pain scores (IVAS 3.32+/-2.39 vs IAL 4.90+/-2.34, P = .18) </li></ul><ul><li>No difference between ease of reduction scores (IVAS 3.32+/-2.36 vs IAL 4.45+/-2.46, P = .12) </li></ul><ul><li>IVAS tended to have higher success rate (20 of 20) than IAL (25 of 29) (P = .16). </li></ul><ul><li>Reduction rate as a function of time delay in treatment </li></ul><ul><ul><li>patients presenting 5.5 h after dislocation more likely to fail treatment with IAL (P = .00001) </li></ul></ul><ul><li>Half of the patients in the IAL group who had experience with IVAS did not favor IAL </li></ul>
  24. 24. Is Sling Appropriate? <ul><li>Non-operative management = Sling immobilzation with the arm internally rotated  No evidence </li></ul><ul><li>Itoi et al. J Bone Joint Surg Am 2001; 83-A(5): 661-667 </li></ul><ul><ul><li>magnetic resonance imaging in patients </li></ul></ul><ul><li>Hatrick C, O'Leary S, Miller B, et al. ORS 2002. </li></ul><ul><ul><li>load sensors in cadavers </li></ul></ul>
  25. 25. <ul><li>Itoi et. al. J Shoulder Elbow Surg. 2003 Sep-Oct;12(5):413-5. </li></ul><ul><li>Prospective, nonrandomized trial </li></ul><ul><li>40 patients initial shoulder dislocations </li></ul><ul><ul><li>Immobilization in internal rotation (IR group, n = 20) </li></ul></ul><ul><ul><li>Immobilization in external rotation (ER group, n = 20) </li></ul></ul><ul><li>Recurrence rate @ 15.5 months </li></ul><ul><ul><li>30% in the IR group </li></ul></ul><ul><ul><li>0% in the ER group </li></ul></ul><ul><li>Difference in recurrence rate was even greater < 30 years </li></ul><ul><ul><li>45% in the IR group </li></ul></ul><ul><ul><li>0% in the ER group </li></ul></ul>
  26. 26. Role of Early Arthroscopic Repair? <ul><li>Bottoni et. al. Am J Sports Med. 2002 Jul-Aug;30(4):576-80. </li></ul><ul><li>Prospective, randomized clinical trial. Army Medical center. </li></ul><ul><li>Compared nonoperative treatment with arthroscopic Bankart repair for acute, traumatic shoulder dislocations in young athletes </li></ul><ul><li>14 nonoperatively treated patients - 4 weeks of immobilization + supervised rehab. program </li></ul><ul><li>10 operatively treated patients - arthroscopic Bankart repair (bioabsorbable tack) + same rehab protocol as nonop. patients </li></ul><ul><li>Av. follow-up = 36 months, 3 patients lost to follow-up </li></ul><ul><li>9/12 nonoperatively treated patients (75%) developed recurrent instability </li></ul><ul><li>6/9 required subsequent open Bankart repair for recurrent instability </li></ul><ul><li>1/9 operatively treated patients (11.1%) developed recurrent instability </li></ul>
  27. 27. <ul><li>Kirkley A, Griffin S, Richards C, Miniaci A, Mohtadi N. </li></ul><ul><li>Arthroscopy. 1999 Jul-Aug;15(5):507-14. </li></ul><ul><li>Compare effectiveness of traditional treatment vs. immediate arthroscopic stabilization in young patients with first traumatic anterior dislocation of the shoulder </li></ul><ul><li>Prospective, randomized, blinded trial </li></ul><ul><li>40 skeletally mature patients < 30 yr </li></ul><ul><li>20 pts, Immobilization for 3 wks + rehabilitation (group T) </li></ul><ul><li>20 pts, Arthroscopic stabilization (< 4 weeks of injury) + immobilization/rehabilitation (group S) </li></ul><ul><li>2 yr follow-up </li></ul><ul><li>Rate of redislocation: T = 47%, S = 15.9%, P = .03 </li></ul><ul><li>Western Ontario Shoulder Instability (WOSI) index showed significantly better results in the surgically treated group at the 33 months </li></ul><ul><ul><li>T = 633.93 v S = 287.1, P = .03 </li></ul></ul><ul><li>No significant difference in range of motion </li></ul>
  28. 28. Role of Arthroscopic Lavage? <ul><li>Wintzell et. Al. J Shoulder Elbow Surg. 1999 Sep-Oct;8(5):399-402. </li></ul><ul><li>Prospective randomized study, Sweden </li></ul><ul><li>Compared treatment results of arthroscopic lavage with results of conventional nonoperative treatment </li></ul><ul><li>30 consecutive patients, traumatic primary anterior shoulder dislocation, 18-30 y, no history of shoulder problems </li></ul><ul><li>2-year follow-up </li></ul><ul><ul><li>3 (20%) of 15 patients in the lavage group had a redislocated shoulder </li></ul></ul><ul><ul><li>9 (60%) of 15 patients in the non-operative group (P = .03) </li></ul></ul><ul><ul><li>2 in lavage group vs. 6 in control group had been operated on or were scheduled for stabilizing surgery </li></ul></ul><ul><ul><li>Functional outcome/Constant and Rowe shoulder scores did not reveal any significant difference (P = .07) </li></ul></ul><ul><li>Joint effusion decreased more rapidly (33%) in arthroscopic lavage group vs. non-operated group </li></ul>
  29. 29. Indications for Surgery <ul><li>1) initial dislocation in a patient who participates in high-risk or high-demand activities in whom recurrent dislocation would be inopportune or dangerous </li></ul><ul><ul><li>professional athletes, mountain climbers, certain types of construction workers </li></ul></ul><ul><li>2) recurrence of dislocation or subluxation after trauma treated adequately with nonoperative measures </li></ul><ul><li>3) pain due to recurrent transient shoulder subluxation when the arm is used for overhead activities </li></ul>Gill & Zarins. Am J Sports Med , Jan-Feb, 2003.
  30. 30. Algorithm for Anterior Shoulder Instability J Am Acad Orthop Surg 1997;5:233-239
  31. 31. Nonanatomic Repairs <ul><li>Bristow </li></ul><ul><ul><li>Transfer coracoid process to anteroinferior glenoid </li></ul></ul><ul><ul><li>Sling effect and bone block </li></ul></ul><ul><li>Putti-Platt </li></ul><ul><ul><li>“ Pants-over-vest” repair capsule </li></ul></ul><ul><li>Magnusen-Stack </li></ul><ul><ul><li>subscapularis tendon is detached from its insertion on the lesser tuberosity, transferred laterally to the greater tuberosity </li></ul></ul><ul><li>Infrequent indications for using these procedures except in revision surgery </li></ul>
  32. 32. Anatomic Repairs <ul><li>Restoring normal anatomy is guiding principle in surgery to correct anterior shoulder instability </li></ul><ul><ul><li>If the labrum has been detached, it is reattached to the anterior glenoid rim </li></ul></ul><ul><ul><li>If the capsule has been stripped off the glenoid neck, the capsule is reattached to the bony glenoid rim </li></ul></ul><ul><ul><li>If greater than one-third of the glenoid fossa is involved, a bone block procedure such as a Bristow or iliac crest bone graft may be considered </li></ul></ul><ul><li>Guidelines </li></ul><ul><ul><li>Anatomic dissection at time of surgery </li></ul></ul><ul><ul><li>Identification and repair of lesions responsible for instability </li></ul></ul><ul><ul><li>Returning tissues to their anatomic locations </li></ul></ul><ul><ul><li>Early postoperative range of motion </li></ul></ul>
  33. 33. Surgical Issues <ul><li>Incision subscapularis tendon/capsule </li></ul><ul><li>Bankart repair </li></ul><ul><li>Capsular shift </li></ul>
  34. 34. Complications <ul><li>Recurrent instability (10%) - most common causes </li></ul><ul><ul><li>continued presence of avulsed anterior capsule and labrum from glenoid rim (unrepaired Bankart lesion) </li></ul></ul><ul><ul><li>excessive capsular laxity </li></ul></ul><ul><ul><li>an enlarged &quot;rotator interval” </li></ul></ul><ul><ul><li>failure to diagnose correct direction(s) of instability </li></ul></ul><ul><li>Other causes include </li></ul><ul><ul><li>presence of a Hill-Sachs lesion </li></ul></ul><ul><ul><li>reduced humeral head retroversion </li></ul></ul><ul><ul><li>excessive glenoid cavity retroversion </li></ul></ul><ul><ul><li>avulsion of the anterior capsule from its lateral humeral attachment </li></ul></ul><ul><ul><li>scarred or weakened subscapularis muscle or tendon. </li></ul></ul><ul><li>Neurovascular injury – musculocutaneous, axillary </li></ul><ul><li>Limitation of motion </li></ul><ul><li>Problems from retained hardware </li></ul><ul><li>Degenerative arthritis </li></ul>
  35. 35. Summary <ul><li>Balance between the restoration of joint stability while minimizing loss of glenohumeral motion </li></ul><ul><li>Choice of treatment should be individualized </li></ul><ul><ul><li>patient's occupation, level of participation in sports, degree of instability of the shoulder </li></ul></ul><ul><li>No single &quot;essential lesion&quot; as proposed by Bankart </li></ul><ul><li>Bankart lesion is by far the most important </li></ul><ul><li>Open stabilization remains the standard procedure for treatment of anterior stabilization </li></ul><ul><ul><li>esp. for severe instabilities, revision procedures, athletes in contact sports </li></ul></ul><ul><li>Follow “anatomic repair principles” </li></ul>
  36. 36. Case <ul><li>25-year-old former collegiate football player presenting with 20 recurrent dislocations over the last 5 years </li></ul>
  37. 37. History <ul><li>25-year-old, right-hand-dominant, former collegiate football player </li></ul><ul><li>Suffered his first traumatic left shoulder dislocation at age 16 </li></ul><ul><li>He had an emergency room assisted reduction and was placed in a sling for 3 weeks </li></ul><ul><li>Underwent physical therapy for 2 months but subsequently had recurrent instability after returning to football </li></ul><ul><li>Age18, he underwent an arthroscopic Bankart reconstruction with 3 metal suture anchors </li></ul><ul><li>He began playing collegiate football, suffered a recurrent dislocation, and eventually had to discontinue playing </li></ul><ul><li>He has now had 20 recurrent dislocations over the last 5 years and presents for evaluation and treatment </li></ul>
  38. 38. Physical Examination <ul><li>Active Shoulder Range of Motion: </li></ul><ul><ul><li>Forward elevation180° bilaterally </li></ul></ul><ul><ul><li>ER (side) 60° bilaterally </li></ul></ul><ul><ul><li>ER (abduction) 90° bilaterally </li></ul></ul><ul><ul><li>IR T-7 spinous process bilaterally </li></ul></ul><ul><li>Right Shoulder Instability Exam </li></ul><ul><ul><li>Anterior load and shift 2+ </li></ul></ul><ul><ul><li>Posterior load and shift 1+ </li></ul></ul><ul><ul><li>Sulcus 1+ </li></ul></ul><ul><ul><li>Negative apprehension, relocation, anterior release </li></ul></ul><ul><li>Left Shoulder Instability Examination: </li></ul><ul><ul><li>Anterior load and shift 3+ </li></ul></ul><ul><ul><li>Posterior load and shift 1+ </li></ul></ul><ul><ul><li>Sulcus 1+ </li></ul></ul><ul><ul><li>No signs of generalized ligamentous laxity. </li></ul></ul><ul><ul><li>Positive apprehension, relocation, anterior release. </li></ul></ul><ul><li>Normal neurological examination. </li></ul>
  39. 39. Imaging <ul><li>Radiographs demonstrate a small Hill-Sachs lesion (yellow arrow) and the previously placed metal suture anchors (blue arrow). </li></ul>
  40. 40. Open anteroinferior capsular shift and Bankart procedure. <ul><li>Modified beach chair position with the head elevated ~30° </li></ul><ul><li>Deltopectoral incision was used </li></ul><ul><li>Subscapularis was dissected off the underlying capsule </li></ul>
  41. 41. Bankart lesion <ul><li>Capsule dissected off the humerus </li></ul><ul><li>Fukuda retractor placed to expose the glenohumeral joint </li></ul><ul><li>Large Bankart lesion was identified from the 6-9 o'clock position </li></ul><ul><li>Bioabsorbable suture anchors were used but had to be redirected carefully to avoid the previously placed metal suture anchors in the anteroinferior glenoid </li></ul>
  42. 42. Capsular Shift <ul><li>Superolateral capsular shift (formal &quot;T&quot; capsulorrhaphy was not necessary) of the entire capsule </li></ul><ul><li>Arm placed in 30° abduction and 30° external rotation for capsular repair </li></ul>
  43. 43. Subscapularis Repair <ul><li>Subscapularis was then anatomically repaired with #2 nonabsorbable sutures </li></ul>

×