SlideShare a Scribd company logo
1 of 18
CHAPTER
                 12

Gas Mixtures
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 12-1
The mass of a
mixture is equal to
the sum of the masses
of its components.




12-1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-2
The number of moles of
a nonreacting mixture is
equal to the sum of the
number of moles of its
components.




12-2
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 12-3
The sum of the mole
fractions of a mixture is
equal to 1.




12-3
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 12-5
Dalton’s law of additive
pressures for a mixture
of two ideal gases.




12-4
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 12-6
Amagat’s law of
additive volumes
for a mixture of
two ideal gases.




12-5
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 12-7
The volume a component
would occupy if it existed
alone at the mixture T and P
is called the component
volume (for ideal gases, it is
equal to the partial volume
yiVm).




12-6
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


FIGURE 12-8
One way of predicting
the P-v-T behavior of
a real-gas mixture is
to use compressibility
factors.




12-7
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-9
Another way of
predicting the P-v-T
behavior of a real-gas
mixture is to treat it
as a pseudopure
substance with
critical properties P′ cr
and T′ cr .




12-8
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-13
Partial pressures (not the
mixture pressure) are used
in the evaluation of entropy
changes of ideal-gas
mixtures.




12-9
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-16
It is difficult to
predict the behavior
of nonideal-gas
mixtures because of
the influence of
dissimilar gas
molecules on each
other.




12-10
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-18
For a pure
substance, the
chemical potential is
equivalent to the
Gibbs function.




12-11
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-20
The specific volume
and enthalpy of
individual
components do not
change during
mixing if they form
an ideal solution
(this is not the case
for entropy).




12-12
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-21
For a naturally
occurring process
during which no
work is produced or
consumed, the
reversible work is
equal to the exergy
destruction.




12-13
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-22
Under reversible
conditions, the work
consumed during
separation is equal
to the work
produced during the
reverse process of
mixing.




12-14
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-23
The minimum work
required to separate
a two-component
mixture for the two
limiting cases.




12-15
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-24
The osmotic
pressure and the
osmotic rise of saline
water.




12-16
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

FIGURE 12-25
Power can be produced
by mixing solutions of
different concentrations
reversibly.




12-17

More Related Content

What's hot

High Efficiency Dynamic Classifier - USA Retrofit Project
High Efficiency Dynamic Classifier - USA Retrofit ProjectHigh Efficiency Dynamic Classifier - USA Retrofit Project
High Efficiency Dynamic Classifier - USA Retrofit ProjectLOESCHE
 
AEV Burners of Alstom GT26/24
AEV Burners of Alstom GT26/24AEV Burners of Alstom GT26/24
AEV Burners of Alstom GT26/24Mostafa Meshref
 
Gt13 e2 gas turbine (in russia and cis countries)
Gt13 e2 gas turbine (in russia and cis countries)Gt13 e2 gas turbine (in russia and cis countries)
Gt13 e2 gas turbine (in russia and cis countries)akharshan
 

What's hot (14)

Cengel ch14
Cengel ch14Cengel ch14
Cengel ch14
 
Cengel ch16
Cengel ch16Cengel ch16
Cengel ch16
 
Cengel ch10
Cengel ch10Cengel ch10
Cengel ch10
 
Cengel ch01
Cengel ch01Cengel ch01
Cengel ch01
 
Cengel ch04
Cengel ch04Cengel ch04
Cengel ch04
 
Cengel ch03
Cengel ch03Cengel ch03
Cengel ch03
 
Cengel appendix
Cengel appendixCengel appendix
Cengel appendix
 
Ousep abstract
Ousep  abstractOusep  abstract
Ousep abstract
 
Presentation 2011
Presentation 2011Presentation 2011
Presentation 2011
 
High Efficiency Dynamic Classifier - USA Retrofit Project
High Efficiency Dynamic Classifier - USA Retrofit ProjectHigh Efficiency Dynamic Classifier - USA Retrofit Project
High Efficiency Dynamic Classifier - USA Retrofit Project
 
AEV Burners of Alstom GT26/24
AEV Burners of Alstom GT26/24AEV Burners of Alstom GT26/24
AEV Burners of Alstom GT26/24
 
Ice kartikey
Ice kartikeyIce kartikey
Ice kartikey
 
Gt13 e2 gas turbine (in russia and cis countries)
Gt13 e2 gas turbine (in russia and cis countries)Gt13 e2 gas turbine (in russia and cis countries)
Gt13 e2 gas turbine (in russia and cis countries)
 
K10972 ice
K10972 iceK10972 ice
K10972 ice
 

Viewers also liked

01 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-0101 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-01gunabalan sellan
 
02 part3 work heat transfer first law
02 part3 work heat transfer first law02 part3 work heat transfer first law
02 part3 work heat transfer first lawgunabalan sellan
 
02 part2 thermo laws first law
02 part2 thermo laws first law02 part2 thermo laws first law
02 part2 thermo laws first lawgunabalan sellan
 
02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth lawgunabalan sellan
 
01 part1 02 parts of a lathe
01 part1 02 parts of a lathe01 part1 02 parts of a lathe
01 part1 02 parts of a lathegunabalan sellan
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law probgunabalan sellan
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Mete Cantekin
 
Indago vtol heli-west_fac_36971_020515_lr[1]
Indago vtol heli-west_fac_36971_020515_lr[1]Indago vtol heli-west_fac_36971_020515_lr[1]
Indago vtol heli-west_fac_36971_020515_lr[1]Brett Johnson
 

Viewers also liked (16)

Cengel ch11
Cengel ch11Cengel ch11
Cengel ch11
 
Fisica
FisicaFisica
Fisica
 
01 part3-real-gases
01 part3-real-gases01 part3-real-gases
01 part3-real-gases
 
00 part1-thremodynamics
00 part1-thremodynamics00 part1-thremodynamics
00 part1-thremodynamics
 
01 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-0101 part2-ideal-gas-problems-01
01 part2-ideal-gas-problems-01
 
02 part3 work heat transfer first law
02 part3 work heat transfer first law02 part3 work heat transfer first law
02 part3 work heat transfer first law
 
Denco chart
Denco chartDenco chart
Denco chart
 
02 part2 thermo laws first law
02 part2 thermo laws first law02 part2 thermo laws first law
02 part2 thermo laws first law
 
02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law
 
01 part1 02 parts of a lathe
01 part1 02 parts of a lathe01 part1 02 parts of a lathe
01 part1 02 parts of a lathe
 
02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob02 part4 work heat transfer first law prob
02 part4 work heat transfer first law prob
 
02 part5 energy balance
02 part5 energy balance02 part5 energy balance
02 part5 energy balance
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410
 
01 part1-ideal-gas
01 part1-ideal-gas01 part1-ideal-gas
01 part1-ideal-gas
 
Indago vtol heli-west_fac_36971_020515_lr[1]
Indago vtol heli-west_fac_36971_020515_lr[1]Indago vtol heli-west_fac_36971_020515_lr[1]
Indago vtol heli-west_fac_36971_020515_lr[1]
 
Basic aircraft control system
Basic aircraft control systemBasic aircraft control system
Basic aircraft control system
 

More from Mete Cantekin

Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)Mete Cantekin
 
Insansız hava araçları
Insansız hava araçlarıInsansız hava araçları
Insansız hava araçlarıMete Cantekin
 
Havacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlarHavacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlarMete Cantekin
 
Gaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılmasıGaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılmasıMete Cantekin
 
Dikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçlarıDikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçlarıMete Cantekin
 
Uçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödeviUçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödeviMete Cantekin
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Mete Cantekin
 

More from Mete Cantekin (7)

Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
Havacılık Deyim ve Kısaltmalar Sözlüğü (Öğr. Gör. Servet BAŞOL)
 
Insansız hava araçları
Insansız hava araçlarıInsansız hava araçları
Insansız hava araçları
 
Havacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlarHavacılıkta kavramsal tasarımlar
Havacılıkta kavramsal tasarımlar
 
Gaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılmasıGaz türbinli motorların tarihçesi ve sınıflandırılması
Gaz türbinli motorların tarihçesi ve sınıflandırılması
 
Dikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçlarıDikey iniş ve kalkış yapabilen hava araçları
Dikey iniş ve kalkış yapabilen hava araçları
 
Uçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödeviUçak tasarımı ugb 312 a ödevi
Uçak tasarımı ugb 312 a ödevi
 
Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410Uçak gövde motor bakım uygulamaları hyo 410
Uçak gövde motor bakım uygulamaları hyo 410
 

Cengel ch12

  • 1. CHAPTER 12 Gas Mixtures
  • 2. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-1 The mass of a mixture is equal to the sum of the masses of its components. 12-1
  • 3. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-2 The number of moles of a nonreacting mixture is equal to the sum of the number of moles of its components. 12-2
  • 4. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-3 The sum of the mole fractions of a mixture is equal to 1. 12-3
  • 5. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-5 Dalton’s law of additive pressures for a mixture of two ideal gases. 12-4
  • 6. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-6 Amagat’s law of additive volumes for a mixture of two ideal gases. 12-5
  • 7. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-7 The volume a component would occupy if it existed alone at the mixture T and P is called the component volume (for ideal gases, it is equal to the partial volume yiVm). 12-6
  • 8. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-8 One way of predicting the P-v-T behavior of a real-gas mixture is to use compressibility factors. 12-7
  • 9. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-9 Another way of predicting the P-v-T behavior of a real-gas mixture is to treat it as a pseudopure substance with critical properties P′ cr and T′ cr . 12-8
  • 10. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-13 Partial pressures (not the mixture pressure) are used in the evaluation of entropy changes of ideal-gas mixtures. 12-9
  • 11. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-16 It is difficult to predict the behavior of nonideal-gas mixtures because of the influence of dissimilar gas molecules on each other. 12-10
  • 12. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-18 For a pure substance, the chemical potential is equivalent to the Gibbs function. 12-11
  • 13. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-20 The specific volume and enthalpy of individual components do not change during mixing if they form an ideal solution (this is not the case for entropy). 12-12
  • 14. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-21 For a naturally occurring process during which no work is produced or consumed, the reversible work is equal to the exergy destruction. 12-13
  • 15. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-22 Under reversible conditions, the work consumed during separation is equal to the work produced during the reverse process of mixing. 12-14
  • 16. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-23 The minimum work required to separate a two-component mixture for the two limiting cases. 12-15
  • 17. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-24 The osmotic pressure and the osmotic rise of saline water. 12-16
  • 18. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. FIGURE 12-25 Power can be produced by mixing solutions of different concentrations reversibly. 12-17