E book energy_enviroment_technology-conflicts_uoc2013

1,145 views
1,086 views

Published on

(...) In Chapter 7 Abbas Ibrahim Zahreddine (Barcelona) and Evren Tok (Doha) have underlined the critical importance of the water-energy-food security nexus (WEF-N) and presented some key initiatives. They emphasized the role of education and communication for sustainable development goals (contact: info@gk4d.eu)

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,145
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
32
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

E book energy_enviroment_technology-conflicts_uoc2013

  1. 1. Diseño de la colección: Editorial UOC Primera edició digital: mayo 2013 © Eduard Vinyamata, de la edición © Dels textos, los autores. Coordinación del libro: María Guadalupe Barajas López © Editorial UOC, de esta edición Rambla del Poblenou, 156, 08018 Barcelona www.editorialuoc.com Realización digital: Sònia Poch Masfarré ISBN: 978-84-9029-245-7 Ninguna parte de esta publicación, incluido el diseño general y la cubierta, puede ser copiada, reproducida, almacenada o transmitida de ninguna forma, ni por ningún medio, sea éste eléctrico, químico, mecánico, óptico, grabación fotocopia, o cualquier otro, sin la previa autorización escrita de los titulares del copyright.
  2. 2. Table of Contents 1. Prologue. Eduard Vinyamata 2. El pico petrolero: evidencias, impactos y mitigación. Juan Martínez Magaña 3. Carbon Markets. Current status and outlook. Martin Gauss 4. New trends on anaerobic digestion for renewable energy production. Xavier Flotats i Ripoll 5. Industrial Ecology for Climate Change Mitigation. Gemma Cervantes Torre–Marín 6. Eating Habits and Global Warming. María Guadalupe Sánchez–Loredo 7. Water, Energy and Food nexus. Abbas Ibrahim Zahreddine and Evren Tok 8. Avances en la regeneración del agua y el ahorro de energía. Rafael Mujeriego Sahuquillo 9. Tecnologías apropiadas para la gestión sostenible del agua y la adaptación al cambio climático. Jordi Morató i Farreras 10. Municipal solid waste management in Catalonia. Current status and challenges. Gabriel Bau Baiges 11. Conclusions and Open Questions. María Guadalupe Barajas López
  3. 3. Prologue Once considered a marginal or even irrelevant issue, in recent years, the environment has come to occupy an increasingly important place on the political, social and economic agenda. Environmental conflicts are often due to conflicting political and economic interests and can have major social repercussions. Until recently, little economic value was attached to drinking water; the same was true of arable land, energy generation and most natural resources. Pollution was regarded as a minor problem. Today, the economic and social value and costs of the environment are seen as incalculable and growing. Soil, food, water and air pollution have led to a significant increase in disease, and the cost of the ensuing environmental clean-up can be exponential. While the solutions are necessarily biological, they can have considerable economic consequences, too. Today, there are people who mine the rubbish for things of value. Financial speculation over arable land, aquifers and other water resources is rampant. Clean energy based on wind power, solar power and geothermal systems has ceased to be viewed as an exotic resource heavily criticized by the fossil-fuel industry and emerged as a mainstream alternative to highly-contaminating, resource-depleting systems. Energy-efficiency policies, once considered reactionary and likely to hinder growth, are viewed as an unequivocal sign of sustainable and rational progress. However, these changes have not given rise to equivalent changes in energy policy and the culture of saving that would safeguard human health, conserve energy resources, rationalize unsustainable economic growth and ensure continuity. On the contrary, the prevailing culture continues to be one of short-term profit at any social or environmental cost. By marshalling scientific evidence and exercising freedom of thought, universities have the opportunity to carry out research and training programmes that promote human health and safety, conflict resolution based on political stability, and a sustainable economy that shrinks in quantity even as it grows in quality, guarantees a return on investment and contributes to the common good. This book is a small contribution to that end. Eduard Vinyamata Director Campus for Peace/School for Cooperation/Conflictology Research and Studies Centre (CREC)
  4. 4. 1 El pico petrolero: Evidencias, impactos y mitigación Juan Martínez Juan Martínez (Huécija, 1958) estudió Ingeniería Eléctrica en la Universidad Politècnica de Catalunya y Máster en Estudios territoriales y de la población en la Universidad Autónoma de Barcelona. Es profesor titular del Departamento de Ingeniería eléctrica de la UPC y profesor de la Càtedra UNESCO de Sostenibilidad. Ha sido director del Máster Internacional en Energía para el Desarrollo Sostenible entre 2006 y 2011. Email: juan@catunesco.upc.edu En 1956 King Hubbert, un geofísico estadounidense que trabajó como tal en el laboratorio de investigación de la compañía Shell, publicó el artículo “Nuclear energy and the fossil fuels”, en aquella época la expansión de la industria petrolera americana era incontenible, el país era el primer productor mundial de petróleo, y la producción anual crecía un año tras otro. Hubbert formuló una pregunta incómoda, ¿cuánto más habrá?, ¿qué tan lejos estamos de completar la explotación?, y como respuesta afirmó que siempre la curva de explotación del petróleo se inicia lentamente y luego se eleva de forma pronunciada, hasta un punto de inflexión después del cual se hace cóncava con una tasa de crecimiento que tiende a disminuir. Para poder representar esa evolución característica formuló dos consideraciones, la primera indica que la tasa de producción será igual a cero cuando el tiempo de referencia es cero, y también lo será cuando se haya agotado el recurso, entre estos dos puntos la producción habrá evolucionado alcanzando un valor máximo en algún momento. La segunda consideración indica que, si conocemos el volumen de reservas disponibles, podríamos trazar diferentes curvas que contendrían este volumen y que empezarían y acabarían en cero, algunas de estas curvas se adaptarían mejor que otras a la evolución conocida, esto nos permitiría proyectar al futuro esta evolución.
  5. 5. 2 Con este método pronosticó que la producción en EE.UU., para unas reservas de 200 Gb, alcanzaría un máximo alrededor de 1970, con una producción de 3 Gb/año. Pero estos pronósticos en realidad no fueron escuchados, hasta que se produjo una declinación súbita de la capacidad de producción, en el año 1971. La consiguiente crisis de abastecimiento fue afrontada incrementando las importaciones desde otros países productores, una alternativa no viable cuando el problema se plantea a escala global. Desde entonces la seguridad de abastecimiento energético ha sido una preocupación básica de los gobiernos. El informe Global Trends 2025: A Transformed World, preparado por el National Intelligence Councilled (NIC) de los Estados Unidos, lo expone de una forma clara, "no creemos que nos dirijamos hacia un colapso total (del sistema internacional)... Sin embargo, los próximos 20 años de transición hacia un nuevo sistema internacional estarán cargados de riesgos", el sistema internacional será desafiado por la creciente escasez de recursos, al mismo tiempo que nuevos jugadores entran en escena. El acceso a una energía relativamente segura y limpia, la gestión de los alimentos y la escasez crónica de agua, adquirirán una importancia cada vez mayor para un número creciente de países. En este sentido, Robert Hirsch, en una importante publicación de 2005, afirma que un déficit de suministros de petróleo convencional, aumentará los precios y su volatilidad, y los eventos relativamente menores tendrán repercusiones pronunciadas. Este proceso se acentuará al aproximarse al pico del petróleo, cuanto mayor sea el déficit de oferta, mayor será el aumento de los precios, mayor será el desabastecimiento, y mayor será la afectación del crecimiento económico. El World Energy Council (WEC) estima las reservas mundiales de petróleo y gases naturales líquidos en 1.238 Gb (billion barrels). Las mayores reservas se concentran en Medio Oriente (60,7%), existen reservas explotables en 86 países, pero los primeros siete países concentran el 72,5% del total, seis de ellos pertenecen a la OPEP, por lo que este grupo de países incrementará su peso en la producción a lo largo del tiempo. Las reservas estimadas de gas natural ascienden a 1.173
  6. 6. 3 Gboe (billion barrels oil equivalent), y las de carbón a 3.054 Gboe. En este sentido la Energy Information Administration (EIA) afirma que las reservas probadas son las cantidades estimadas de petróleo crudo en yacimientos conocidos, y que estos son sólo un subconjunto de toda la base potencial de los recursos de petróleo, y por tanto estas previsiones deben de considerar petróleo que en la actualidad no es técnicamente recuperable o no ha sido descubierto. Las reservas probadas no son, por tanto, una medida adecuada para juzgar la disponibilidad total de recursos en el largo plazo. Sin embargo J.Campbell, uno de los referentes de la Association for the Study of Peak Oil (ASPO), plantea que son muchos los motivos que pueden impulsar a los países productores y las propias empresas petroleras a sobrevaluar las reservas reportadas, y no existe ninguna agencia internacional que tenga capacidad para validar la información ofrecida, hay al menos cinco aspectos que pueden hacer dudar de este optimismo: la confusión en las fuentes estadísticas entre recursos y reservas, el secreto que en algunos estados tienen estas estadísticas, los distintos criterios empleados a la hora de reportar datos (reservas probadas frente a probables y posibles), la confusión entre distintos tipos de recursos petrolíferos (convencional, no convencional), y especialmente la falta de transparencia por parte de muchos gobiernos a la hora de contabilizar sus reservas. Por tanto las discrepancias en cuanto a las reservas pueden ser considerables, lo que se traduce en una ventana amplia de posibilidades respecto al momento del peak-oil, es un hecho estadístico que la producción máxima de petróleo convencional se alcanzó en 2006, y existe incertidumbre sobre la capacidad de los productos no convencionales para sostener el incremento de la demanda y la caída de la producción en los yacimientos existentes. La propia International Agency Energy (IAE), en su informe WEO2010, analiza la evolución de la producción en base a tres escenarios: el tendencial, el de Nuevas Políticas, y el escenario 450, este último se refiere a un escenario en el que se aplicarían las políticas que garantizan que no se superarán las concentraciones de 450 ppm de CO2 en la atmósfera.
  7. 7. 4 En el escenario de Nuevas Políticas la producción de crudo de los campos que estaban en producción en 2009, cae de 68 mb/d en 2009 a 16 mb/d en 2030, una caída de tres cuartas partes. La tasa de agotamiento observado en el mundo, es actualmente del 6,7% para los yacimientos que han llegado al máximo de la producción, este índice aumenta al 8,6% en 2030, a medida que más y más campos rebasan su punto óptimo y entran en su fase de declive, y a medida que aumenta la proporción de campos pequeños y de alta mar. Se ha calculado que durante el período de estudio, es necesario añadir un total de 67 mb/d de nueva capacidad bruta, para compensar la disminución en los campos petrolíferos existentes y convencionales, y para satisfacer el crecimiento de la demanda, una empresa difícilmente viable. Los riesgos de abastecimiento asociados con el peak-oil deben de ser abordados con estrategias a corto, medio y largo plazo. La seguridad de abastecimiento se refiere a un abastecimiento seguro y adecuado de energía, a precios razonables, por seguro se entiende ininterrumpido que responda plenamente a las necesidades, pero la interpretación de precios razonables no es tan clara, en general para los informes oficiales de referencia, significa que los precios están basados en costos y determinados por el mercado o basados en los balances de oferta/demanda. En este ámbito, Europa considera que la gestión del riesgo energético debe de ser afrontado desde la cooperación internacional y el refuerzo de las opciones de mercado, tanto en el interior como en el exterior. Y centra su atención en herramientas como reforzar las reservas estratégicas, la diversificación de las fuentes de origen, los contratos de disponibilidad, la flexibilidad del sistema de energía, etc. Hirsch plantea en el informe referido que la crisis energética que supone el peak-oil, se plantea en el ámbito de los combustibles líquidos, que estos son consumidos principalmente en el sector transporte, y que el movimiento de mercancías y personas es la base del funcionamiento del sistema. Considera también una correlación prácticamente perfecta entre el consumo de energía y la evolución de la economía, es decir a pesar de ser los combustibles líquidos una parte de la demanda,
  8. 8. 5 su déficit afecta por tanto el conjunto del sistema, incrementando su vulnerabilidad. Sus propuestas se dirigen a paliar la escasez de estos combustibles, proponiendo cinco líneas de actuación. La primera es la mejora de la eficiencia en el sector del transporte, su principal apuesta es la tecnología hibrida, que podría suponer ahorros del 40%, la aplicación de esta medida requiere de la substitución del parque móvil y por tanto de un plazo de tiempo considerable. Otras medidas en este ámbito pasan por reforzar el transporte público, los medios de transporte no motorizado, el transporte de mercancías por ferrocarril y en fomentar sistemas basados en el concepto de proximidad. Una segunda propuesta consiste en la aplicación de tecnologías mejoradas de recuperación de petróleo (EOR). Permitirían conseguir mejoras de entre 7% y 15%, aunque su aplicación no siempre es viable. La tercera opción es el uso de petróleo no convencional, que incluye los petróleos pesados y las arenas y pizarras bituminosas, la cantidad que estima Hirsch que se puede esperar extraer, es de unos 600 Gbarriles, principalmente localizados en Canadá y Venezuela, estas técnicas producen resultados limitados, tasas de retorno energético más bajas, productos de peor calidad que el petróleo convencional, e impactos ambientales muy importantes, por emisiones de CO2, por uso y contaminación masiva de agua, y por la utilización de productos químicos que permanecen en el subsuelo una vez concluidas las explotaciones, estas técnicas conocidas como fracking movilizan actualmente a grupos ambientalistas y de defensa del territorio. La licuefacción del carbón y la del gas son otras dos opciones propuestas, técnicamente viables, y también empiezan a serlo económicamente, dados los altos precios del petróleo. En el caso del carbón la eficiencia de los procesos no supera el 50%, y supondría acelerar la explotación de estas reservas. En el largo plazo, pero como resultado de una estrategia sostenida, las alternativas pasan por una producción desde fuentes renovables, con la energía solar, eólica e hidráulica, como principales
  9. 9. 6 recursos, y en la minimización de los consumos, a partir de la eficiencia, el ahorro y una cultura responsable de uso de los recursos, las políticas en estos ámbitos han de responder a los objetivos marcados en la Hoja de ruta hacia una economía hipocarbónica competitiva en 2050 de la Unión Europea, que propone reducciones del 80% en las emisiones de CO2, para la fecha indicada, del 96% en la producción de electricidad, del 85% en la industria, del 60% en el transporte y del 90% en el sector residencial y de servicios. Web links K. Hubbert. Nuclear energy and the fossil fuels (1956) (http://www.hubbertpeak.com/) National Intelligence Councilled. Global Trends 2025: A Transformed World. US Government Printing Office, 2008. (http://www.dni.gov/) R. Hirsch. Peaking of World Oil Production: Impacts, Mitigation and Risk Management. SAIC, Project Leader, 2005 (http://www.netl.doe.gov/) WEC. Survey of Energy Resources 2010. (http://www.worldenergy.org/) CJ.Campbell y JH. Laherrère. The end of cheap oil. Scientific American. March 1998 (http://www.peak-oil-crisis.com/) IEA. World Energy Outlook 2010. (http://www.worldenergyoutlook.org/) A. Correljé. Energy supply security and geopolitics: A European perspective. Energy Policy 2006. (http://www.sciencedirect.com/) CE. Hoja de ruta hacia una economía hipocarbónica competitiva en 2050. COM(2011) 112 final. (http://eur-lex.europa.eu/) ASPO International (http://www.peakoil.net/) EAREN-ASPO España (http://www.crisisenergetica.org/)
  10. 10. 1 Carbon Markets – current status and outlook Martin Gauss Martin Gauss has over 12 years of professional experience in the field of environmental protection working for the private and public sector. Presently, Martin is a senior consultant with Kommunalkredit Public Consulting based in Vienna, Austria. His activities focus on the purchase of carbon credits from low-carbon projects and programmes in Latin America, Africa and Eastern Europe, and consulting for international institutions in the field of climate change, energy and finance. Email: m.gauss@kommunalkredit.at Introduction The main objective of this paper is (i) to introduce fundamental features of carbon markets, (ii) to acquaint the reader with the concept of emissions trading as a cost-effective instrument to reduce greenhouse gas emissions, citing the EU’s Emissions Trading System as an example, and (iii) to give an outlook on future developments. International climate negotiations as the cradle of carbon markets The Kyoto Protocol commits industrialized countries to legally binding reductions of a basket of greenhouse gases, including CO2. At the same time, it also defines a set of mechanisms that allow countries with commitments to use tradable emission rights (or carbon offset credits) originating from low carbon projects in other countries to meet their obligations. These mechanisms, elaborated and negotiated by international climate diplomats, lay the foundations for international carbon markets. Carbon emissions trading as a key tool to mitigate climate change In general, emissions trading is a marked-based instrument to reach an environmental goal at the lowest possible cost. This economic concept can be applied to ensure that a limit on carbon emissions – such as set by the Kyoto Protocol – is met cost-effectively. By reducing emissions,
  11. 11. 2 carbon trading contributes to the mitigation of climate change and hence is a key climate policy tool. A carbon market facilitates the exchange of carbon emissions permits (or allowances). A carbon emission permit (allowance) – the market commodity – grants its owner the right to emit one (metric) ton of carbon dioxide (CO2) per year. The transfer of the permits between the market participants is referred to as trade. Key players in carbon markets are those participants that need to reduce their carbon emissions either to comply with regulation or voluntarily. Accordingly, (industrial) companies, governments, but also institutions or persons that want to “green” their carbon footprint play an important role in carbon emissions trading, generating demand for carbon permits. These permits are traded according to its price, which follows the market principle of supply and demand. The carbon permits can be traded between the participants either directly or through dedicated market places such as exchanges. Types of carbon markets and related carbon emissions trading systems Carbon emissions trading can take various forms. The two most prominent ways are (a) cap-and-trade systems and (b) offset crediting (baseline and credit programmes). These approaches are briefly described below. (a) Cap- and- trade systems In this type of emissions trading, a limit (“cap”) is set to the overall amount of carbon permits, representing the overall amount of carbon allowed to be emitted (i.e. the target). The carbon permits are allocated to the emitters covered by the system. After a certain period, compliance of the participants is monitored by comparing their actual emissions with the number of carbon permits they need to surrender. Market participants that keep their emissions below the allotted level may sell their permits to other market participants. Each participant can thereby freely decide how to meet their target, either by buying carbon permits or by reducing their emissions through appropriate measures at the source.
  12. 12. 3 Basic design elements of a cap-and-trade system include (World Bank, 2012; IETA, 2013): • Coverage and scope: These terms refer to the geographical boundaries and the greenhouse gas emitting sectors included (coverage) and the single emission sources engaged (scope) in the system. • Target setting: Setting a limit (cap) to the greenhouse emissions over a certain period as the environmental target to be complied with is fundamental for the functioning of the system. The cap is the number of carbon allowances (permits) available for a given compliance period, indicating the scale of emission reductions required by the sources of the scheme. The cap is a core factor that determines demand. • Allocation of permits (allowances): The permits can be distributed either gratis (according to historic emission levels or based on benchmarks) or sold through auctions, thereby generating important revenues. • Monitoring, reporting, verification (MRV) and compliance: Integrity of the scheme and public confidence rely on measuring and accounting of emissions and carbon permits, transparency of the market backed by publically available information and enforcement of the environmental obligations. • Compliance period: The target usually needs to be achieved over a certain compliance period (of a number of years) providing stability and enabling allowance trading. • Institutional arrangements: The scheme needs to be based on institutional arrangements, including legal & technical infrastructure, according to policy settings (scope, target, allocation method, etc.), operational issues (MRV methods, registry operation, enforcement of compliance, etc.) and market oversight (providing transparency and ensuring integrity). • Use of offsets (and linking): Offset credits are carbon permits that arise from emission reductions from projects in other countries. They can optionally be used for compliance in the scheme and generally lower compliance costs. Linking refers to the inter-connection of
  13. 13. 4 cap-and-trade schemes or the connection with an offset generating scheme for the purpose of lowering overall compliance costs. Presently, the largest operating cap-and-trade system is the European Union Emission Trading System (EU ETS). It started in 2005 and covers more than 11.000 power stations and industrial plants in 31 countries, as well as airlines (European Commission, 2013). In its third phase, the EU ETS shows the following features (IETA, 2012): • Extended scope (adding aluminium and part of the chemical industry to the power and heat generation sector, combustion plants, oil refineries, coke ovens, iron and steel plants and factories producing, among other, cement, glass, lime, bricks, ceramics); • A prolonged compliance period (2013-2020) and centralized EU-wide allocation of allowances with a yearly decrease of the emissions cap; • Auctioning of allowances as the main allocation method, and product-specific benchmarks for allocation to industrial operators; • International offset credits will continue to be eligible for compliance, subject to quantitative limits and qualitative restrictions regarding offset project types. (b) Offset markets: carbon credits from emission reduction projects Carbon offsetting is the reduction of greenhouse gases through projects in one region to compensate for emissions taking place elsewhere (Sandbag, 2012). Such projects can potentially contribute to the transfer of sustainable technologies to host (developing) countries. The predominant offset credits arise from mechanisms defined under the Kyoto Protocol, namely the Clean Development Mechanism (CDM) and Joint Implementation (JI). Emission reductions achieved through, e.g. renewable energy and energy efficiency projects, and verified by independent auditors and the United Nations, can be traded as emission permits through the offset carbon market for compliance under the Kyoto Protocol by governments and installations under the EU ETS. Offset credits from projects not recognized under the CDM or JI can potentially be traded on the voluntary carbon market.
  14. 14. 5 Outlook on future carbon markets International Climate Negotiations at Doha, Qatar in December 2012 resulted in a second commitment period (2013 to 2020) under the Kyoto Protocol for a limited number of countries – including the EU – during which their greenhouse gases are to be reduced. In line with the resulting obligations, the EU’s Emissions Trading System has entered into its third phase, also allowing offset credits for compliance. At the same time, other countries like Korea, Australia, New Zealand, China, Brazil, have been setting up or are considering the establishment of emission trading systems that can potentially be linked up in the future. Offset crediting mechanisms will also continue to be an important element of international climate negotiations, exploring the extension from project level to entire (industrial) sectors within a country. Although much work has to be done to further develop carbon markets and related trading systems, they will continue to be important instruments to fight climate change in the future. Web links European Commission, DG Clima http://ec.europa.eu/dgs/clima/mission/index_en.htm World Bank Partnership for Market Readiness www.thepmr.org United Nations Framework Convention on Climate Change www.unfccc.int References: International Emissions Trading Association (2013), The basic Design Elements of Cap-and-Trade Systems, policy brief, www.ieta.org World Bank Partnership for Market Readiness (2012), Domestic Emissions Trading: Existing and Proposed Schemes, PMR Technical Note 2 European Commission (2013), The European Union Emission Trading System (web based) International Emissions Trading Association (2013), The EU’s Emissions Trading System, policy brief, www.ieta.org Sandbag (2012), Help or Hindrance? Offsetting in the EU ETS, www.sandbag.org
  15. 15. 1 New trends on anaerobic digestion for renewable energy production Xavier Flotats Xavier Flotats is full professor on environmental engineering in the Department of Agrifood Engineering and Biotechnology at Universitat Politècnica de Catalunya – UPC BarcelonaTECH, Spain, and member of GIRO Joint Research Unit IRTA-UPC. His scientific and professional activity has focused on the management and processing of organic waste, especially anaerobic digestion, pre- treatments and combined processes for nutrients and energy recovery applied to livestock manure, as well as mathematical modelling and parameters identification of biological processes. Email: xavier.flotats@upc.edu Anaerobic digestion is a microbiological process following different reactions in a synergic scheme where organic matter is transformed into biogas, a flammable gas constituted mainly by methane (CH4) and carbon dioxide (CO2), with a CH4 content ranging from 55% to 75% by volume. This process can be applied to sewage sludge, animal manure, organic industrial waste, organic fraction of municipal solid waste, energy crops and high strength organic wastewaters, converting all these material as resources for renewable energy production in the form of CH4. The process contributes also to the mitigation of anthropogenic CO2 emissions, considered to be around 90% reduction of the corresponding emission of the fossil fuel substituted by biogas, which can be almost doubled for manures, since its controlled anaerobic digestion and subsequent energy use of biogas decreases the natural emissions of CH4 to the atmosphere. Figure 1 depicts a scheme of the main reactions occurring during the anaerobic digestion process and microorganisms catalysing them. The detection of the rate limiting steps helps to understand the technological trends on reactors and facilities design developed to overcome these limitations. Considering that 0.35 m3 CH4 is equivalent to 1 kg COD (Chemical oxygen demand), the knowledge of the initial COD of an organic waste to be consumed by anaerobic microorganisms (anaerobic biodegradability) allows the estimation of the final methane potential. Some wastes, as the ligno-
  16. 16. 2 cellulosics, presents very low values, and a general trend of the biogas sector is to adopt methods to increase biodegradability of the materials to be processed. LIPIDS (Greases, oils, ...) PROTEINS (Meat, polypeptides, ...) CARBOHYDRATES (Fibers, starch, polysaccharides, ...) Long chain fatty acids (AGCL) Amino acids Monosaccharides Propionic acid, Butyric acid, Valeric acid,... NH4 + Acetic acid Non-biodegradable organic compounds and inorganics H2 CO2 Methane (CH4) Biogas NH3 + H+ Bicarbonate HCO3 - + H+ (CO2)liq + H20 (CO2)gas Ionized acids Ac- + H+ Organic acids HAc INORGANIC COMPOUNDS Relevant physico- chemical equilibria ACETOGENESIS METHANOGENESIS Acetogenic bacteria Methanogenic archaeae Hydrogenotrophic/Acetoclastic DESINTEGRATION AND HYDROLYSIS Hydrolytic - acidogenic bacteria ACIDOGENESIS ORGANICMATTER Figure 1. Steps of the anaerobic digestion process. The first step is disintegration, by which particulate organic materials break into its biodegradable components (proteins, carbohydrates and/or lipids) and into a pool constituted by inorganic and non-biodegradable organic compounds. In the digesters this process is catalysed by enzymes, being particles surface dependent; the lower the particles surface, the higher the disintegration rate. Methods for improving anaerobic digestion of solid waste are related to the decrease of the particles size trough pre-treatments: shearing, maceration, thermal pre-treatment, application of ultrasound waves, acid or alkali attach, ammonia soaking, etc. By decreasing the particle size, the substrate is more available to the superficial enzymatic attack and an increase on biodegradability and biogas production is possible. For waste with high lipids and proteins content, pasteurization (70ºC, 1 hour) has proven to exert a positive effect on biodegradability, while for high proteins and carbohydrates concentration waste this pre-treatment favours reactions between sugars and amino acids, producing recalcitrant compounds and decreasing biogas production.
  17. 17. 3 The second step is hydrolysis, where lipids break into alcohols and long chain fatty acids (LCFA), like oleic or palmitic acid. LCFA inhibit microorganisms adsorbing onto the cells membrane, limiting the external nutrients transport and damaging the membrane. This is a serious limitation for producing biogas from fatty wastes, being this kind of substrates the ones presenting the highest biogas yield per mass unit (around 1 m3 CH4/kg lipids). Recently, it has been found that this inhibition is reversible and inhibited reactors can recover its activity. Methods to prevent the inhibition are the addition of inorganic competitive adsorbents, such as bentonite, the pre-treatment of fatty waste by saponification or to increase biomass concentration in reactors by recirculating digested solids to the reactor feeding, in order to have a low ratio lipids/biomass and a high cells retention time. Proteins break into its amino acids and carbohydrates into monosaccharides during the hydrolysis step. The following step is acidogenesis of the hydrolysed products. The acidogenesis step is usually a fast process and does not represent a limitation for the overall process, as disintegration is for particulate feedstocks. Products of acidogenesis are acetate and H2 from LCFA, and acetate, H2 and other volatile fatty acids from monosaccharides and amino acids, which releases ammonium also. Following step is acetogenesis, where volatile fatty acids convert to H2 and acetate. These reactions are thermodynamically favourable if the concentration of products are maintained low, mainly partial pressure of H2, which is possible if microorganisms catalysing its conversion to CH4 (methanogenic archaeae) grow without being inhibited. This symbiotic relationship (syntrophy) between acetogenic bacteria and methanogenic archaeae is the base of a good anaerobic digestion process, and favours the acidogenic reactions also. Low partial pressure of H2 is a necessary condition for many reactions during the anaerobic digestion process, which is possible with a low distance between H2 producing and consuming microorganisms. This can be obtained with the formation of aggregates or granules of these anaerobic microorganisms.
  18. 18. 4 Anaerobic reactors designed with the objective to maintain high concentrations of granules are applied to the treatment of industrial wastewaters with high organic content. In comparison with aerobic wastewater treatment methods, anaerobic systems allow higher organic loading rates, lower CO2 equivalent emissions and could be net energy producers, being in some cases facilities providing an economical profit instead to be an economical charge to the industry producing the wastewater. This kind of installations can be found in breweries, fruit juice or sugar factories, as examples of food industries, and as example of a growing area where anaerobic digestion can provide environmental, energy and economical benefits. It can be appreciated in the Figure 1 that all organic compounds are converted to different volatile fatty acids, which accumulation could decrease pH to low levels, inhibiting the microbial growth. pH also affects the equilibrium between ammonium and ammonia, which is an inhibitor of the acetoclastic methanogens. The equilibrium between CO2 and bicarbonate is important to maintain pH around neutrality, and the buffer capacity of a waste to be processed is a property to consider for a good anaerobic digestion. While animal manure has a high buffer capacity, although low methane production potential and high ammonium content, some industrial organic waste present the opposite characteristics, being the anaerobic digestion of mixtures of both substrates the way to have high biogas productions and a stable process. This practice, named codigestion, consists on mixing wastes with complementary compositions in order to implement economically feasible plants, to unify management methods and to optimize investment costs (Flotats and Sarquella, 2008), and is the base concept of the centralized biogas plants in Denmark. The primary energy production of biogas in Europe was 10.1 Mtoe (millions tonnes of oil equivalent), with an electrical production of 35,850 GWh, during 2011 (Eurobserv’er, 2012). Germany has around 7,000 biogas plants mainly processing energy crops and manure, as well as organic industrial and household wastes, with a primary energy production of 5.1 Mtoe and electrical sells to the grid around 19,400 GWh during 2011. Apart the classical uses of biogas for thermal or
  19. 19. 5 electrical energy production, the use as vehicles fuel or as natural gas substitute, after an upgrading process to produce biomethane, are gaining interest worldwide. The injection to the natural gas grid enables biomethane to be stocked and used remotely from the production site, in order to be consumed when and where the energy conversion efficiency will be higher, instead to be transformed to electricity onsite without an useful and efficient recovery of the wasted heat. This practice is thought to be the next developing industrial step of the biogas sector, being Germany the leading country with more than 130 biomethane plants with a capacity of 70,000 Nm3 /h (equivalent to 154 GWh of electrical production), while Sweden is leading the use as carburant, with many buses in Stockholm city consuming biomethane. Web links Biogas Barometer. Eurobserv’er, December 2012 http://www.eurobserv- er.org/pdf/baro212biogas.pdf Biogas as vehicles fuel http://www.biogasmax.eu/european-conference-on-biomethane/download/ Centre for Bioenergy (Denmark) http://web.sdu.dk/bio/ International Energy Association. Biogas Network http://www.iea-biogas.net/ Flotats, X., Sarquella, L. (2008). Production of biogas by anaerobic codigestion. Cuadern pràctic número. ICAEN (In Catalan) http://www20.gencat.cat/docs/icaen/06_Relacions%20Institucionals%20I%20Comunicacio/04_Publi cacions/Arxius/01_Produccio%20biogas.pdf German Biogas Industries Association (Germany) http://www.german-biogas-industry.com/ Spanish Probiogas Project (In Spanish) http://www.probiogas.es/
  20. 20. 1 Eating habits and global warming María Guadalupe Sánchez-Loredo Guadalupe Sánchez (San Luis Potosí, México, 1966) studied Chemistry at the Universidad Autónoma de San Luis Potosí (UASLP). She holds a master degree in Metallurgy from the Instituto Politécnico Nacional, Mexico, and a Ph.D. degree in Applied Chemistry from the University of Paderborn (Germany). Full-time Professor at the UASLP in the fields of Materials Science, Hydrometallurgy and Environmental Chemistry, works as a volunteer in animal welfare issues, writing weekly about the subject since 2004 at the newspaper El Heraldo de San Luis. Email: msanchez@uaslp.mx In September 2009, the Baltimore School District became the first in the USA to adopt the Meatless Monday policy. The campaign, an international movement asking people to observe one meat-free day a week in order to improve personal health, and the health of the planet, is supported by celebrities such as Paul McCartney and medical institutions such as the John Hopkins Bloomberg School of Public Health. Rajendra Pachauri, chair of the UN's Intergovernmental Panel on Climate Change (IPCC), also urged people to cut-out meat one day a week to reduce greenhouse gases. According to the United Nations Environment Programme (UNEP), the agriculture, and particularly meat and dairy production, accounts for 70% of global freshwater consumption, 38% of total land use and 19% of the world's greenhouse gas emissions. When emissions from land use and land use change are included, the livestock sector accounts for 9% of CO2 emitted by human-related activities, and produce a large share of more harmful greenhouse gases. It generates 65% of human- related nitrous oxide, which has 296 times the Global Warming Potential of CO2. N2O is very persistent in the atmosphere where it may last for up to 150 years, and emissions from anthropogenic sources amount 7-8 million tonnes N/year (70% results from crop and livestock production). Livestock accounts for 37% of all anthropogenic methane (23 times as warming as CO2) and 64% of
  21. 21. 2 ammonia emissions. The UNEP report states that a gradual shift towards a vegan diet is crucial to fight hunger and the worst impacts of climate change. The next pages will show how at virtually every step of the animal agriculture, gases contributing to climate change are emitted in large quantities into the atmosphere, as described in the FAO’s report, Livestock’s long shadow (2006). Livestock and land use changes Livestock affects the carbon balance of the land used for pasture or feedcrops. When rainforest is cleared or burned to create land suitable for grazing or cropland, significant amounts of carbon are released from the soil and the vegetation. Forests in Latin America have lost as much as 67% of their trees as land was cleared for agricultural uses (including livestock), according to a report of the UN Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries. Livestock’s role in deforestation is important in the continent, the one suffering the largest net loss of tropical forest. At least half of the cropland expansion in Bolivia and Brazil is attributed to feed production for the livestock sector. Livestock-related land use changes emit about 2.4 billion tonnes of CO2 per year. Releases from livestock-induced desertification of pastures might sum about 100 million tonnes CO2 per year. The rate of soil degradation and desertification was estimated to be higher under pasture than under other land uses (3.2 million hectares per year against 2.5 million hectares per year for cropland). Emissions during manufacturing An enormous amount of fossil fuel is consumed during the whole production process, from feed production, operation of factory farms and slaughterhouses, to products marketing. Energy consumption at the different stages varies widely, depending mainly on the intensity of production. In modern systems most of the energy is spent on feed production (forage for ruminants or concentrated feed for poultry or pigs), but important amounts are spent on seed, herbicides and pesticides, diesel for machinery and electricity. As a large share of the world’s crop production is used to feed farm animals, emissions caused by manufacturing of fertilizers must also be considered.
  22. 22. 3 Crops use the nitrogen from chemical fertilizers at a rather low efficiency (about 50%), and most of the losses enter the nitrogen cycle through water. About 3 million tonnes N/year reach the surface waters as ammonia. Livestock production can be considered responsible for a global NH3 volatilization from mineral fertilizer of 3.1 million tonnes of nitrogen in NH3 form per year, and for global emissions of 0.2 million tonnes N in N2O form per year. Sometimes, for instance in dairy farms, feed production does not account for the biggest share of energy consumption, and electricity is the main form of energy use. As an example, in Minnesota, feed production (maize and soybean), and pig and dairy operations, are the largest sources of agricultural CO2 emissions. On-farm fossil fuel use may emit 90 million tonnes CO2 per year, but emissions in extensive systems (where the feed proceeds mainly from grasslands or crop residues), are expected to be low or negligible. Diesel is used for transport to processing facilities, and transport emissions for milk are particularly high. Besides, large amounts of energy are used to pasteurize milk, and for cheese and dried milk production (the dairy sector is the second highest responsible for CO2 emissions from food processing in Minnesota, after the soy processing for animal feed production). Transport occurs at two critical stages: the first is the delivery of feed to animal producers, where large amounts of raw ingredients for concentrate feed are shipped around the world, emitting significant amounts of CO2. Calculations of the cost of shipping soybean from Brazil to Europe result in an annual emission of some 32,000 tonnes CO2. The second is the delivery of animal products to consumer markets. Not including the transport of live animals, the total annual meat transport induced CO2 emission would be about 800-850 thousand tonnes. Emissions from livestock rearing Emissions of CO2 result from the respiratory process of animals (some 3 billion tonnes per year by livestock respiration). Cattle account for more than half of the total emissions, but as the plants consumed during rearing originated through the conversion of atmospheric CO2 into organic compounds, respiration is not considered to be a net source under the Kyoto protocol. The
  23. 23. 4 equilibrium is disrupted in the case of overgrazing or bad management of feedcrops. Livestock is the most important source of human-related methane emissions. Ruminants, and to a minor extent also monogastrics, emit methane as part of their digestive process, which involves microbial fermentation of fibrous feeds. CH4 released accounts for about 86 million tonnes per year. In Brazil, methane from livestock enteric processes summed 9.4 million tonnes in 1994 (93% of agricultural and 72% of total methane emissions). Over 80% originated from beef cattle. In the USA, methane emissions (mainly from beef and dairy cattle) accounted 5.5 million tonnes in 2002, 71% of agricultural emissions and 19% of the country’s emissions. Animal manure Animal manure emits gases such as methane, nitrous oxides, ammonia and carbon dioxide. Anaerobic decomposition of organic material in manure releases methane (18 million tonnes per year), mostly when manure is managed in holding tanks or lagoons (typical for large-scale pig operations outside Europe, and for large dairy operations in North America and Brazil). Pig production contributes the largest share, followed by diary. Manure sprayed on fields and pastures, or handled in a dry form, does not produce significant amounts of methane. Other contribution is gas emission from cropland (particularly rice) through methane emissions when the soil bacteria process the animal manure used as fertilizer. N assimilation by farm animals is even lower than for crops (15%) and therefore an important amount of N returns to the environment through excretions. When manure is used as organic fertilizer, some of the N re-enter the crop production cycle. For cattle, inefficiency is not relevant when they are grass-fed, or raised on crop and food processing residues. But beef production has the greatest impact when the animals are feed concentrates (mixtures of cereals and soybeans). In systems where the animal intake of N is high, more than half of the nitrogen is excreted in the urine. In urine, over 70% of N is present as urea (uric acid in poultry excretions), and degradation of urea and uric acid to ammonium leads to volatilization during storage and treatment of manure. An
  24. 24. 5 estimated of 10 million tonnes of N as NH3 were lost to the atmosphere from confined animal feeding operations (CAFOs) in the mid 1990s, and volatilization from animal manure after application on land was calculated to be about 23% worldwide. Fazit The Livestock’s long shadow report proposes some technical options for mitigation of greenhouse emissions from animal products fabrication, but fact is, that a substantial reduction of impacts would only be possible with a drastic worldwide diet change, away from animal products. It takes 8 times as much fossil fuel to produce animal protein as it does to produce plant protein. A study in the Environmental Science and Technology found that a dietary shift can be a more effective means of lowering an average household’s food-related climate footprint than “buying local.”. Mellissa Mahoney, Chef and Dietician for Baltimore schools told CNSNews.com that the Meatless Monday had a positive response from most staff and students. She said, “It’s not the ultimate goal to convert all Baltimorians to being vegans or vegetarians. What we want to do is at the least start the discussion about what you eat and how that affects the community, how that affects the planet, how it affects your health in general.” Web links www.meatlessmonday.com www.care2.com/causes/meatless-mondays-in-baltimore-schools-causes- controversy.html#ixzz2Mukdh6KF na.unep.net/geas/getUNEPPageWithArticleIDScript.php?article_id=92 www.un-redd.org/ www.guardian.co.uk/environment/2010/jun/02/un-report-meat-free-diet www.un.org/apps/news/story.asp?newsID=20772&CR1=warning www.fao.org/docrep/010/a0701e/a0701e00.HTM www.fao.org/newsroom/en/news/2006/1000448/index.html www.newscientist.com/article/dn13741-food-miles-dont-feed-climate-change--meat-does.html
  25. 25. 1 Industrial Ecology for Climate Change Mitigation Gemma Cervantes Torre-Marín Gemma Cervantes Torre-Marín, Ph.D. in Chemistry by Universitat de Barcelona, worked as full professor in Universitat Politècnica de Catalunya and in the Unesco Chair of Sustainability (Terrassa, Spain). She is currently a full professor in Instituto Politécnico Nacional (México City, México) where she develops research and teaching in Industrial Ecology and Sustainable Development. She's been a board member of the International Society of Industrial Ecology (ISIE), co-creator of the Catalan Network of Industrial Ecology and, at present, coordinator of the Mexican Network of Industrial Ecology and board member of the Industrial Symbiosis/Eco- Industrial Development section of the ISIE. Email: gemma.cervantes@gmail.com 1. What is Industrial Ecology (IE) Industrial ecology (IE) can be defined as a multidisciplinary approach whose ultimate goal is to have industrial systems operate like natural ecosystems by having industries; society and nature interact mutually in cycling matter and increasing process efficiency. IE innovates and promotes a new way of thinking by expanding the limits from the firm to the industrial system. This is a major challenge for today's world and also one of the few ways in which industries can strive towards more sustainable development. One of the aims of the mutual cooperation of industries is to achieve zero emission/zero waste. This can be partly accomplished by having an industry use by-products and waste from another similar to the cycling of matter in natural ecosystems. This approach potentially brings economic and environmental benefits that include not only resource savings, but also the minimization of waste generation and emissions. Also industrial ecology can improve a firm’s corporate image and result in more harmonic cooperation between industries and their social and natural surroundings.
  26. 26. 2 However, industrial ecology is more than an approach to closing material cycles (also known as “industrial metabolism” and “industrial symbiosis”). In fact, it provides the foundation for a number of economic, environmental and social approaches and tools which aim at the reduction of environmental impact, leading to higher efficiency and more sustainable development. Industrial Ecology also addresses the economic activity and develops tools and strategies for the establishment of eco-industrial parks. This facilitates the planning of new industrial systems (greenfields) and the redevelopment of existing ones (brownfields). Accordingly, the concept of industrial ecology matches with the concept of sustainable development given the fact that it addresses the ecological, economic and social dimension. In fact, one of the greatest contributions of industrial ecology is its systemic approach to the industrial system, by which industries relate to one another, society and nature. IE creates networks where human activities are understood as industrial activity: tourism, agriculture, transport, etc. and where there are different types of exchanges, not only material: socioeconomic relationships, cooperation, customer-supplier, research, membership of associations, etc. Industrial Ecology as a concept is continuously changing and redefining itself since its creation. Since it addresses the sustainability of human systems the concept is very wide in scope. Industrial symbiosis (IS) belongs to the wide field of IE. IS focuses on the flow of materials and energy through networks of businesses and other organizations in local and regional economies as a means of approaching ecologically sustainable industrial development. IS is at the same time a methodology and a fundamental experience to turn industrial systems into eco-industrial systems.
  27. 27. 3 2. Industrial Ecology Examples There are a lot of IE examples worldwide. Although IE started in Europe and North-America, since 2000 it has increased specially in Asia. One of the first examples was developed in Kalundborg (Denmark) and still goes on evolving and adapting to the present conditions. Other examples in Europe are Styria in Austria, Jyväskylä and Turku in Finland, Herning-ikast in Norway, and others. In North-America one of the best examples is Burnside in Canada, Also Fairfield and Brownsville in USA and Devens (USA), one of the best eco-industrial communities around the world, and Tampico in México (Figure 1) In Asia IE national politics started in China in 2000, and also Japan, South Korea and Thailand have developed IE politics in. In South Korea more than 30 EIP have been developed. One of the most important korean EIP is Ulsan. In Australia one of the most important EIP is Kwinanna. 3. Tools, strategies and resources for Industrial Ecology Industrial ecology uses the cycle-closing method or industrial symbiosis, but it also makes use of many other methods and tools that help to reduce environmental impact, improve eco-efficiency and create good industrial planning and increase output, always tending towards greater sustainability. Some of these are economic-environmental assessment, lifecycle assessment, sustainable development indicators, material flow analysis, cleaner production, input-output analysis, design for the environment, ecological, carbon and water footprint, eco-efficiency, environmental management, corporate social responsibility, among others. These methods and tools can be used while bearing in mind that the specific purpose of industrial ecology is to create a network of industries interwoven with their social and natural surroundings. IE may be applied at a local or a regional or national level. The strategies will be different depending on the level we are applying it. IE may be applied at a local level by: transforming an
  28. 28. 4 industrial state into an eco-industrial network, planning of a new industrial ecosystem or an eco- industrial park, creating corporate integrated systems, or others. And it may also be applied at a regional or national level by: applying IE to Industrial sectors, applying a material flow analysis (MFA) of a region or country, promoting a by-product exchange network (physical or virtual) and through eco-industrial development. There are a lot of different resources in IE: societies (International Society for Industrial Ecology Korean Society for Industrial Ecology), journals (Journal of Industrial Ecology), conferences (ISIE conference, Industrial Symbiosis Research Symposium, Gordon Conference on Industrial Ecology, etc.), postgraduate studies (Indecol Programme, Inter-university Master of Science on IE , Industrial Ecology International Master’s Programme, etc.), software (Presteo), books (Handbook of Industrial Ecology, Perspectives on Industrial Ecology, Industrial Ecology And Spaces of Innovation, etc.) among others. 4. Industrial Ecology and climate change mitigation Industrial Symbiosis and industrial ecology may contribute to diminish GHG emissions as they reduce the amount of wastes disposed and also reduce the amount of raw material produced directly from natural resources. Studies conducted in eco-industrial parks (EIP) showed that reduced energy intensity was the main factor mitigating carbon emissions although other indicators showed the same result. Therefore, it is believed that EIPs have great potential to reduce CO2 emissions. Bibliography • AYRES R, AYRES L, Ed. (2001) A Handbook of Industrial Ecology. Northampton: Edward Elgar. • BOURG D, ERKMAN S, Ed. (2003) Perspectives on Industrial Ecology. Greenleaf Publishers. • CERVANTES, G. (2007) Ecologia industrial. Barcelona: Fundació Pi i Sunyer
  29. 29. 5 Figure 1. Industrial Symbiosis in Tampico (Mexico)
  30. 30. 1 Avances en la regeneración del agua y el ahorro de energía Rafael Mujeriego El Prof. Mujeriego se jubiló en 2011 como Catedrático de Tecnologías del Medio Ambiente en la ETS de Ingeniería de Caminos, Canales y Puertos de la Universidad Politécnica de Catalunya, donde ha ejercido la docencia y la investigación durante 35 años. Es un IWA Fellow desde junio de 2011 y recibió la distinción de Persona WateReuse del año 2010 por parte de la Asociación Americana de Reutilización del Agua por “sus contribuciones significativas al progreso de la reutilización del agua y su continuada dedicación a la comunidad de la reutilización del agua”. Email: rafael.mujeriego@upc.edu REGENERACIÓN Y REUTILIZACIÓN El proceso de tratamiento necesario para que un efluente depurado pueda ser reutilizado se denomina regeneración y el resultado de dicho proceso agua regenerada (Asano y col., 2007; Mujeriego, 2009). La implantación de un proyecto de regeneración de agua tiene dos requisitos complementarios: 1) definir los niveles de calidad aplicables a cada posible uso del agua y 2) identificar los procesos de tratamiento recomendados para alcanzar los niveles de calidad aplicables a cada uso. La dificultad de establecer una relación causal entre la calidad del agua regenerada y los posibles efectos sobre la salud pública y el medio ambiente ha resultado en una gran diversidad de criterios y normas de calidad (USEPA, 2012; OMS, 2006 ; Ministerio de Presidencia, 2007 ; Ministère de la Santé et des Sports (2010)). Reutilizar un agua regenerada es ponerla a disposición de los usuarios para que puedan dedicarla a los usos previstos; ello requiere: 1) su transporte desde la estación de regeneración de agua (ERA) hasta el lugar de uso, 2) su almacenamiento temporal para adecuar el caudal producido por la ERA a los caudales requeridos por el usuario y 3) la definición de unas normas de utilización del agua que minimicen los posibles riesgos directos o indirectos para el medio
  31. 31. 2 ambiente, las personas y los consumidores de productos en contacto con el agua. Los dos primeros requisitos suelen depender de las autoridades hídricas o ambientales, mientras que el tercero lo suele ser de las autoridades sanitarias. BENEFICIOS DE LA REUTILIZACIÓN PLANIFICADA La reutilización planificada del agua comporta múltiples beneficios: 1) una fuente de suministro de agua nueva, alternativa o no convencional que aporta recursos adicionales, bien sean netos o bien alternativos para liberar recursos de mejor calidad, 2) un ahorro energético, evitando traídas de agua desde zonas alejadas a la ERA, 3) una mayor garantía de suministro, pues los efluentes depurados tienen una fiabilidad muy superior a la mayoría de las fuentes naturales de agua, especialmente en zonas semi-áridas como las mediterráneas españolas y 4) un carácter local y fiable de la nueva fuente de agua, evitando la necesidad de trasvases. La reutilización del agua constituye, junto con la regulación en embalses en derivación y en acuíferos subterráneos y con el uso eficiente del agua elementos básicos de la gestión integrada de los recursos en zonas semi- áridas como las del sur de California (Departamento de Recursos Hídricos, 2009). EXIGENCIAS DEL PROCESO DE REGENERACIÓN Los proyectos de reutilización del agua deben asegurar una gran fiabilidad del proceso de regeneración y una gestión adecuada del sistema de reutilización. La regeneración del agua se concibe actualmente como un proceso destinado a obtener un producto de calidad, de modo muy similar al adoptado en las instalaciones de potabilización de agua para consumo humano. El transporte del agua regenerada desde la ERA hasta el punto de uso es una exigencia de cualquier proyecto de reutilización y suele requerir la construcción de una nueva, o doble, red de distribución. La experiencia en la gestión de estas dobles redes de distribución revela unos costes cada vez mayores de ampliar la red, a distancias crecientes de la ERA. La existencia de procesos técnicos capaces de producir agua regenerada de calidad igual o superior a la de consumo humano está planteando un cambio de prioridades en estados como Texas y California (Tchobanoglous y col., 2011): dejar de ampliar esas redes de distribución y concentrar los
  32. 32. 3 esfuerzos técnicos y económicos en los procesos de regeneración, promoviendo la reutilización potable indirecta (RPI) o directa (RPD). En definitiva, se está planteando sustituir inversiones en reutilización (red de distribución) por otras en procesos de regeneración. USOS DEL AGUA REGENERADA El agua regenerada se utiliza para múltiplos usos: 1) usos urbanos (jardinería, lucha contra incendios, lavado de calles y automóviles), 2) usos industriales (torres de refrigeración, lavado de vagones), 3) riego agrícola, de jardinería y forestal, 4) usos ornamentales y recreativos, 5) mejora y preservación del medio natural, 6) recarga de acuíferos y 7) producción de agua de consumo humano. El riego agrícola y de jardinería constituye el aprovechamiento más extendido del agua regenerada, tanto para cultivos hortícolas (consumo directo) como para cultivos con procesamiento posterior, cereales, cítricos y viñedos. La creciente demanda de agua para usos urbanos, junto con la disponibilidad de crecientes caudales de efluentes depurados en esas mismas zonas y de procesos de tratamiento de agua capaces de separar casi todos los contaminantes conocidos y detectables en las aguas de suministro han propiciado el uso de efluentes depurados como materia prima para producir agua regenerada de calidad equivalente a la mejor agua superficial o subterránea disponibles. La aplicación de estos procesos de regeneración avanzada, incluyendo filtración con membranas de desmineralización (ósmosis inversa) y desinfección con biocidas de efecto complementario como la luz ultravioleta (UV), los derivados clorados, el agua oxigenada y el ozono, está permitiendo obtener agua de gran calidad química y sanitaria, dando paso así a la RPI y la RPD. Las dos estrategias básicas adoptadas para impulsar la RPI y la RPD son: 1) la información y la participación del público, mediante procesos bien organizados, sistemáticos y continuados y 2) la utilización del medio natural (embalses y acuíferos) como un componente del sistema de reutilización. Este concepto innovador se viene aplicando desde hace varios años en diversos lugares pioneros del mundo como 1) el proyecto Groundwater Replenishment System (GWRS) del Orange County Water District (OCWD) del sur de California, iniciado en enero de 2008, tras
  33. 33. 4 más de 30 años de estudios y demostraciones previas, 2) el proyecto de recarga de dunas costeras de Wulpen, en Bélgica, 3) el proyecto NeWater de Singapur y 4) el proyecto Western Corridor de Southeast Queensland en Australia. El objetivo de todos ellos es ofrecer una nueva fuente de agua de abastecimiento público, más fiable que las fuentes convencionales disponibles ante la irregularidad meteorológica. El Consorci Costa Brava dispone de numerosos proyectos para la reutilización de un 18% de sus efluentes en riego agrícola y de jardinería, así como para mejora ambiental y usos urbanos. El Área Metropolitana de Barcelona (AMB) dispone de una ERA para la regeneración avanzada de agua para recargar una barrera contra la intrusión salina en el delta del río Llobregat (Mujeriego y cols., 2008a). Este proyecto de demostración de RPI es complementario a un sistema mucho más amplio (con capacidad de 100 hm3 /año) de regeneración básica de agua para abastecer zonas húmedas, riego agrícola y caudales ambientales del río Llobregat. El proyecto de RPI tiene una capacidad de 15.000 m3 /día para alimentar los pozos de la barrera contra la intrusión salina, y consta de unos procesos de regeneración avanzada del agua similares a los adoptados en los proyectos internacionales citados: ultrafiltración, ósmosis inversa y desinfección con luz UV. La ERA de El Prat de Llobregat tiene una capacidad de 185.000 m3 /día (67 hm3 /año) de agua regenerada que puede ser utilizada como fuente de suministro indirecto para las plantas de potabilización del AMB, en caso de sequía o necesidad episódica en la zona. Aunque esta capacidad de regeneración no satisface por completo la fiabilidad de suministro requerida por el AMB, sí podrá contribuir a paliar los efectos de un futuro episodio de sequía como el de 2008. REGENERACIÓN Y DESALACIÓN La reutilización planificada y la desalación de agua tienen varios elementos en común. De una parte, utilizan una materia prima no convencional y en cierto modo mucho más abundante que los recursos convencionales, especialmente en el caso del agua marina. De otra parte, necesitan conductos específicos para incorporar el agua producida a las redes de distribución existentes. Por último, mientras que la regeneración avanzada alcanza una recuperación del 85% y consume
  34. 34. 5 unos 1,5 kWh/m3 , la desalación de agua de mar alcanza una recuperación del 45% y consume más de 3,5 kWh/m3 , lo que explica la notable diferencia en sus costes unitarios de producción. Tanto la regeneración como la desalación alcanzan su utilización óptima cuando las instalaciones funcionan de forma continuada, de modo que las inversiones puedan distribuirse sobre el mayor volumen de agua producido. La utilización de un buen efluente secundario de origen municipal como fuente de agua para la regeneración es una estrategia bien demostrada en proyectos como el GWRS, desarrollado durante 25 años en el OCWD. Este concepto es el mismo que se está aplicando en zonas como Singapur y San Diego, aunque con una capacidad inferior. COSTE DEL AGUA REGENERADA El estudio económico del AMB (2011) para la reutilización básica (riego sin restricción) indica una inversión de 0,25 €/m3 de capacidad anual y un coste de E&M de 0,032 €/m3 de agua producida. El coste de E&M para desmineralizar un agua regenerada básica, mediante electro- diálisis reversible (riego agrícola), es de 0,13 €/m3 , mientras que mediante ultrafiltración y ósmosis inversa (inyección en barrera) es de 0,20 €/m3 . El consumo energético de la regeneración básica y avanzada es bien diferente. Mientras que la regeneración básica en Catalunya y California tiene unos consumos unitarios inferiores a 1 kWh/m3 (Sala y Serra, 2004), la regeneración avanzada en California alcanza hasta 1,5 kWh/m3 (Schroeder y col., 2012); por otra parte, el trasvase de agua desde el norte al sur de California consume una media de 2,31 kWh/m3 . Estos autores estiman que la implantación de la RPD en el sur de California para un caudal de 860 hm3 /año (50% del trasvasado) significaría un ahorro energético mínimo de 0,81 kWh/m3 y uno anual de 0,70 TWh que, a un coste de 0,075 $/kWh, resultaría en un ahorro anual mínimo de 52 millones de dólares. El coste del agua regenerada producida por el proyecto GWRS, incluyendo la distribución a la barrera contra la intrusión salina y a las lagunas de recarga de acuíferos, era de 0,39 $/m3 en 2012 y pasará a ser de 0,42 $/m3 cuando se complete su ampliación en 2014. Estos costes son inferiores a los 0,80 $/m3 exigidos por Metropolitan Water District en 2013 para las aguas superficiales trasvasadas.
  35. 35. 6 CONCLUSIONES La reutilización planificada del agua constituye un componente esencial de la gestión integrada de los recursos hídricos, especialmente en zonas costeras, donde puede contribuir de forma significativa al aumento neto de los recursos. El progreso de la regeneración y la reutilización del agua no depende solo de los avances tecnológicos; un marco legal y reglamentario sólido y una voluntad política decidida de llevarlas a cabo son factores determinantes de su desarrollo. El agua regenerada ofrece una garantía de suministro muy superior a la de las fuentes convencionales, especialmente en zonas semi-áridas desarrolladas, donde los recursos hídricos son cada vez más limitados e irregulares y donde la protección ambiental es una prioridad cada vez más destacada. La regeneración de agua para usos no potables ha adquirido un gran desarrollo en numerosas partes del mundo, particularmente en las zonas costeras e insulares españolas, donde ha alcanzado unas excelentes cotas de fiabilidad y de aceptación por parte de los usuarios y del público en general. La RPI se aplica desde hace años como concepto innovador en unos pocos lugares del mundo, como el sur de California, Bélgica, Singapur, el sudeste de Australia e incluso el AMB. Su objetivo común es generar una nueva fuente de agua de abastecimiento, más fiable ante la irregularidad meteorológica. La regeneración de agua para su RPI y RPD puede competir favorablemente en consumo energético con los trasvases de agua desde ciertas distancias, como ocurre en el sur de California, donde producir agua regenerada para su RPD cuesta 1,5 kWh/m3 mientras que trasvasarla desde 800 km al norte (delta Sacramento-San Joaquín) requiere 2,3 kWh/m3 . La sustitución de la mitad (860 hm3 /año) de las importaciones actuales resultaría en un ahorro anual de más de 52 millones de dólares. REFERENCIAS Asano, T., Burton, F.L., Leverenz, H. L., Tsuchihashi, R. and Tchobanoglous, G. (2007). Water Reuse: Issues, Technologies, and Applications. Metcalf and Eddy/AECOM. McGraw-Hill. Mujeriego, R. (Editor) (1990). Manual Práctico de Riego con Agua Residual Municipal Regenerada. Universidad Politécnica de Cataluña, Barcelona.
  36. 36. 7 Mujeriego, R., Compte, J., Cazurra, T. y Gullón, M. (2008a). The water reclamation and reuse project of El Prat de Llobregat, Barcelona, Spain. W. Sc. & Tch., Vol. 57, No.4, pp. 567-574. Sala, L. y Serra, M. (2004). Towards Sustainability in water recycling, W. Sc. and Tch., Vol. 50, No. 2, pp. 1-8.
  37. 37. 1 Tecnologías apropiadas para la gestión sostenible del agua y la adaptación al cambio climático Jordi Morató i Farreras Coordinador de la Cátedra UNESCO de Sostenibilidad de la Universitat Politècnica de Catalunya (UPC), miembro del SUMMLAB y coordinador del Grupo de Gestión Sostenible del Agua (AQUASOST). Licenciado en Ciencias Biológicas por la Universidad Autónoma de Barcelona (UAB). Ph.D. en Microbiología por la UAB (2001) y profesor titular de Universidad por la UPC. Investigador principal en proyectos coordinados con grupos de investigación o empresas nacionales e internacionales, en el campo de la calidad del agua, evaluación del riesgo sanitario, tecnologías apropiadas para el tratamiento y la desinfección de aguas y la gestión sostenible de los recursos hídricos. Email: jordi.morato@upc.edu La gestión sostenible del agua se puede entender como la gestión de los recursos hídricos que tiene en cuenta las necesidades de los usuarios, tanto del presente como las futuras. Esta visión implica una nueva manera de mirar el uso y el valor de los recursos hídricos. El Programa Hidrológico Internacional, una iniciativa de la UNESCO (IHP 1990), apunta que “los problemas del agua no se pueden solucionar con simples soluciones técnicas; las soluciones a los problemas del agua requieren la consideración de aspectos culturales, educacionales, científicos y de comunicación”. La gestión sostenible del agua intenta por tanto abordar el problema de forma holística, tomando en cuenta los diferentes sectores que afectan al uso del agua, incluyendo los políticos e institucionales, los económicos, sociales, tecnológicos y ambientales, y entendiendo que el agua es un recurso finito esencial para sostener la vida, el ambiente y el desarrollo, tal como se resumió en las conclusiones de la Conferencia Internacional del Agua y el Medio Ambiente de Dublín en 1992 (ICWE 1992). En España, la Fundación Nueva Cultura del Agua (FNCA) promueve una aproximación multidisciplinar a la gestión del agua, que incluye asegurar un uso eficiente y socialmente equitativo
  38. 38. 2 del agua, garantizando además la calidad de los ecosistemas acuáticos. La Nueva Cultura del Agua comporta compatibilizar su uso y la explotación con la conservación del medio: se debe reconocer la función ecológica y social y su papel como un bien público que hace falta proteger y conservar. Todo ello, sin olvidar que es fundamental una mayor participación de todos los actores involucrados, ya que ésta puede prevenir conflictos y crear soluciones más adecuadas, en comparación a la forma tradicional tecnocrática de gestión de los recursos hídricos. De hecho, en muchos países los aspectos técnico-económicos han dominado completamente la toma de decisiones en el ámbito de la gestión de los recursos hídricos. La falta de participación ha sido la responsable del fracaso de varios proyectos hidrológicos de gran tamaño, como fue el caso del Plan Hidrológico Nacional en España. Por tanto, la transparencia, la transferencia de conocimiento y la participación pública son cruciales para el éxito de una gestión sostenible de los recursos hídricos. Una gran parte de estos principios inspiraron la Directiva Marco del Agua (2000/60/CE), una normativa obligatoria para todos los miembros de la UE. Entre los principios a adoptar, incluye organizar la gestión de las aguas para prevenir y reducir su contaminación, fomentar su uso sostenible, proteger el medio acuático, mejorar la situación de los ecosistemas acuáticos y paliar los efectos de las inundaciones y las sequías. En este sentido, la Directiva Marco del Agua incorpora ya una componente de adaptación al cambio climático importante. Por otra parte, no hay que olvidar que si queremos abordar la problemática de la gestión sostenible de los recursos hídricos debemos realizar la aproximación a través del estudio de los procesos que se establecen en las cuencas hidrográficas en su conjunto. No obstante, y al mismo tiempo, debemos incorporar las ciudades en el marco de trabajo. Actualmente, las ciudades representan un 2% de la superficie del planeta, aunque globalmente más del 50% de los habitantes del planeta viven en ciudades, y algunas previsiones muestran que para el 2050 esta cifra será del 75% (UNEP, 2009), y que además son las responsables de más del 70% de las emisiones de gases de efecto invernadero (EIA, 2008; Clinton Climate Initiative).
  39. 39. 3 Desde la Cátedra UNESCO de Sostenibilidad de la UPC hablamos del concepto Reciclar Ciudad (RE_C), como expresión de la necesidad de transformación hacia un nuevo concepto de gestión sostenible del territorio, incluyendo dentro de las propuestas de planeamiento urbano, estrategias para la gestión integrada de los recursos naturales y del territorio. Esta visión a gran escala no excluye la reflexión sobre los patrones, valores y actitudes relacionadas con el comportamiento de cada individuo de una comunidad, y las relaciones que se establecen entre los diferentes miembros de la comunidad y su territorio, analizando y reconociendo el valor del conocimiento tradicional, valorando los antiguos lazos de relación sociedad-territorio de las sociedades preindustriales y los antiguos conceptos de habitar y concebir el territorio y la ciudad como un proceso de construcción colectivo. El uso de tecnologías apropiadas es esencial si queremos progresar hacia una gestión de los recursos hídricos mucho más sostenible, y que esté diseñada desde sus fundamentos para mejorar la resiliencia de nuestros sistemas y territorios. Si pensamos en el cambio climático, nuestro enfoque tiene que ir dirigido a incluir las capacidades adaptativas frente a eventos climáticos extremos, como puedan ser las inundaciones, sequías y otros. Una tecnología será “apropiada” en la medida que dé respuesta integral a los problemas específicos que la originaron y contribuya a disminuir otros problemas del contexto y no a incrementarlos; es decir que aporte mejoras a la realidad global, surgiendo desde y para esa realidad. En este sentido, el conocimiento de los sistemas técnicos y socio-culturales es fundamental para entender como una población determinada ha podido coexistir con eventos extremos en un pasado. No existe, por tanto, una solución apropiada si no es específica para cada contexto, por lo que es evidente que la adaptación se debe basar en un trabajo a escala local/regional. En este sentido, la UNESCO viene trabajando los últimos años en recuperar parte de ese patrimonio inmaterial, básico para poder facilitar la adaptación de los sistemas socio-ecológicos. Los sistemas naturales de depuración son tecnologías apropiadas que además de su función dentro
  40. 40. 4 de una gestión sostenible de los recursos hídricos, permiten su utilización como herramientas para mejorar la capacidad adaptativa frente a eventos climáticos extremos. Por un lado, pueden tratar de forma eficiente cualquier efluente contaminado. Por otra parte, la reutilización del efluente tratado puede contribuir a mejorar la calidad de los recursos de agua superficiales y, en determinados casos, puede reutilizarse para recargar acuíferos, para su uso agrícola, industrial, etc. Las sequías frecuentes en áreas áridas o semiáridas, como en el caso del Mediterráneo, han propiciado la realización de proyectos para el reuso del agua. En los últimos años, la utilización de sistemas naturales de tratamiento, como los humedales construidos, ha ido ganando aceptación, ya que a pesar que precisa de más área que los sistemas convencionales equivalentes, destacan por su facilidad de operación y porque requieren menos (o ninguna) energía. Por otra parte, pueden utilizarse para gestionar cualquier tipo de efluente, ya sean aguas residuales domésticas, industriales, agrícolas u de otro tipo. En las ciudades adquieren especial importancia en la gestión del agua de escorrentía urbana y en su uso para mejorar la capacidad de infiltración del suelo urbanizado. Las tecnologías apropiadas como los humedales construidos son eco-infraestructuras multifuncionales, puesto que facilitan la apropiación de la tecnología y la participación (función social) en los proyectos constructivos y en el propio mantenimiento. Además permiten la descontaminación frente a una ingente cantidad de tóxicos y contaminantes (función ambiental), con un coste energético y de mantenimiento mucho menor que tecnologías convencionales equivalentes. Finalmente, pueden utilizarse con la misma eficiencia tanto a nivel de cuenca hidrográfica (escala regional) como a nivel urbano (escala local), si se incorporan dentro de una estrategia de Planeamiento Urbano Integral Sostenible, disminuyendo el impacto ambiental de la ciudad en el medio natural, fomentando mecanismos de participación social en la correcta gestión del territorio y la corresponsabilidad en la gestión de los recursos ligados al metabolismo de la ciudad.
  41. 41. 5 Web Links Programa Hidrológico Internacional http://www.unesco.org.uy/phi Declaración de Dublin sobre el Agua y el Medio Ambiente http://www.wmo.int/pages/prog/hwrp/documents/english/icwedece.html Fundación Nueva Cultura http://www.fnca.eu Directiva Marco del Agua http://europa.eu/legislation_summaries/agriculture/environment/l28002b_es.htm Clinton Climate Initiative http://www.clintonfoundation.org/main/our-work/by-initiative/clinton-climate-initiative/ The contribution of cities to global warming and their potential contritubtions to solutions. http://eua.sagepub.com/content/1/1/1.full.pdf United Nations Population Division (2009). World urbanization prospects: the 2009 revision”. http://esa.un.org/unup/Documentation/highlights.htm International Energy Agency (IEA). 2008. World Energy Outlook, 2008. Paris. http://www.worldenergyoutlook.org Intangible Heritage http://www.unesco.org/culture/ich/index.php?lg=EN&pg=home
  42. 42. 1 Municipal solid waste management in Catalonia- current status and challenges Gabriel Bau Baiges Gabriel Bau has worked far more than 12 years in the implementation of the Catalonia strategy to manage municipal solid waste giving technical advice to different public organizations during the design, construction, start-up and operation of waste management infrastructures. His educational background includes a Master Degree in Civil Engineering, an MBA and various postgraduate courses in waste management. Email: gabrielbaubaiges@gmail.com Introduction The main objective of this paper is to disseminate the present situation of the implementation of the waste management strategy of Catalonia and the future challenges in the face of the present economic situation. The basic model of municipal solid waste (MSW) management in Catalonia consists on the separation at source of 5 main fractions: organic matter, paper/cardboard, glass, packaging (metals) and a reject waste named RESTA. Each of the fractions is treated in a specific facility before sending it to a take-back firm in order to separate unsuitable materials. This is mainly collected at street level. However, there is also another model in which the collection is done door to door. In this case, the quality of waste separation is higher but there is some controversy about the costs of collection (in some cases they could be higher). In fact, more than 250.000 inhabitants of Catalonia of a total of more than 7,5 inhabitants used this collection model in the year 2009. You can see more details of the different models here and of the door to door model in the Association of Municipalities of Catalonia for the Door to Door (“Porta a Porta”) here. In addition, there have been proposals to reintroduce a deposit-refund system (SDDR) in which the citizens pay a deposit for the packaging they buy that is recouped when it is returned. This systems works in some northern European countries and some states of the USA but it has not had been
  43. 43. 2 tried here yet. A non-profit organization called Retoma is collaborating with several bodies to improve the current system of packaging collection. For more information you can check the Retoma web page here. As part of the European Union and Spain, in Catalonia there exists a specific regulatory framework for waste management with the hierarchy of preventing, recycling, recovering (first materially and then energetically) and finally disposing of waste. According to the EU directives the objectives are the reduction of biodegradable municipal waste being dumped (35% less by 2016 of the amount generated in 1995) and the recycling of at least paper, metal, plastic and glass (50% by 2020). In addition, according to the regional laws, the reduction of the generation of waste per capita must reach 10% compared with the values of 2006 (this means up to 1,48 kg/inhabitant/day), 48% of the materials contained in waste to be recycled, and the reduction of the volume of waste going to landfill or incineration without treatment to 0. All these must be achieved by the year 2012. For more detailed information you can check here. The main regulator in Catalonia is the Agència de Residus de Catalunya (ARC, you can consult their web page here). The responsibility to manage MSW depends on the municipalities, which normally aggregate into bigger organizations such as Consortiums or County councils to share the costs of the construction and operation of the infrastructures. It has to be taken into consideration the importance of having a relatively near point of treatment to avoid high costs of transport and also public opposition in allocating new facilities near residential areas. This is due to mainly the inconveniencies of noise and odour they produce and the impact on landscape and environment. Apart from these organizations, there are other important organizations that focus on the responsibility of the packaging companies. They are the Integrated Systems of Management Waste (SIGs). The two most well known are Ecoembes and Ecovidrio but there are some more. You can consult the web pages of these here and here. Among other things, these organizations collect money from the producers of the products that we buy (packaging companies) and reinvest it to finance the costs of selective collection and in information campaigns to the consumers. This
  44. 44. 3 financing is proportional to the level of recovery attained by the municipalities, for example, those of paper, glass, metals and brick cartons. In addition, there are two taxes to be paid for the use of landfill and incineration. These are 10€/ton of municipal waste being directly dump and 5€/ton of municipal waste being directly incinerated. This is done according to the law 8/2008 of waste management infrastructures financing that you can consult here. The money that is collected from these taxes is used in actions to improve the waste management model. Current status Due to the economic crisis, consumer habits have changed and, as a result, the amount of waste generated has been reduced from year to year. Catalonia is the autonomous community of Spain with the highest quantity of separate collection, as you can see in the following survey carried out by the Observatorio de la Sostenibilidad en España (OSE) (see link) (page 179) about Sustainability in Spain in the year 2012. This is basically because in Catalonia it is compulsory the collection at source of the organic fraction and because of the high quality of the facilities. From the autonomous point of view, Catalonia is in the last step of the implementation of its roadmap for its municipal waste management. This is the “Pla Territorial Sectorial d’Infraestructures de gestió de residus municipals a Catalunya 2005-2012” (now in process of revision), see link. In this roadmap, the ARC has implemented or adapted a number of facilities to cover the waste treatment of main part of Catalonia. The total investment of it was approximately 728 million €. There are still some plants on the roadmap to be implemented and locally there are some problems of excess of capacity. Apart from that, the ARC and other organizations have launched different campaigns to raise public awareness of the problems associated with waste, the importance of its prevention and the collaboration of everyone to minimize its negative impacts. In previous campaigns, the aim has been to encourage recycling activities such as this or the separate collection of food leftovers. The
  45. 45. 4 most recent campaign has gone one step further, aiming to achieve higher values of material recovery of high quality of packaging. It has had a great impact not only because of its catchy slogan but also because citizens were thus made aware that they were separating in the wrong way. Instead of separating by type of material (such as plastics or glass) the campaign asks people to do it by type of use (to separate packaging waste from other waste). It has generated some controversy because it follows the objective of separating the packaging, which is the part of plastics for which Ecoembes pay back, when people where thinking of separating by materials that could be recyclable. It also asks people to consult the ARC web page to learn how to separate properly. Regarding generation, each citizen of Catalonia produces 1,47 Kg of MSW per day in the year 2011 according to ARC. Here is the link where you can see the breakdown of the generation by counties. 40,57% of this amount is collected separately (paper, glass, packaging, organic matter), 21,21% goes to a plant to be treated (the RESTA fraction) and 38,22% still goes directly to landfill or an incineration plant. For the treatment of RESTA fraction there is what is called Mechanical-Biological plants (MBT). In this the recyclable materials are separated and sent to recovery firms and in addition, the organic fraction is stabilized to avoid greenhouse gas emissions (in fact waste sector is responsible for 4% of the total emissions in Spain in 2009 (see link) and has a great potential of reduction. According to my personal experience, in the MBT plants of Catalonia the percentages of materials recovery varies from 6 to 9% and the scrap quantities are less than 50%. Other outlets of these plants are waste derived fuels (WDF), biostabilized waste, compost and energy. One of the processes to stabilize urban biodegradable waste is biomethanization. Apart from stabilized waste, this process also generates methane, which is usually transformed into energy and sold to cover part of the electricity demand of cities. During recent years this income has been reduced because of the introduction of legislative changes (most recently the Real Decreto Ley 2/2013 of Urgent measures in the Electrical System of January 2013, see link) and now the viability of this source of renewable energy is in jeopardy.
  46. 46. 5 Challenges Some of the challenges during the years to come will be:  To find funds to build some of the planned infrastructures before the current infrastructures are no longer sufficient or suitable  To drive down the cost of waste management and at the same time achieve higher ratios of recycling  To adapt the system to a period of more global instability  To reduce household food wastage, lengthen product life among similar measures  To find an outlet to municipal biodegraded waste generated because of its low quality and low demand  To find an outlet to waste derived fuel because of the reduction of its demand to produce cement for the construction sector  To continue the reduction of municipal solid waste going directly to landfill. Web links Associació de Municipis catalans per al porta a porta http://www.portaaporta.cat/en/index.php Ecoembes http://www.ecoembes.com Ecovidrio http://www.ecovidrio.es/ Retorna http://www.retorna.org/ca/ Agència de Residus de Catalunya http://www20.gencat.cat/portal/site/arc/?newLang=en_GB http://www.arc-cat.net/ca/publicacions/pdf/agencia/programes/exp_publica/progremic.pdf Observatorio para la Sostenibilidad en España http://www.sostenibilidad-es.org/en/acerca-de- ose/observatory-on-sustainability-in-spain-ose Real Decreto 2/2013 Medidas urgentes en el sistema eléctrico y el sector financiero http://www.boe.es/boe/dias/2013/02/02/pdfs/BOE-A-2013-1117.pdf
  47. 47. 1 Water, Energy and Food nexus Abbas Ibrahim Zahreddine and Evren Tok Abbas Ibrahim Zahreddine is an Agricultural engineer, masters degree in Education for Environment, and Ph.D. Research project “Mediterranean Eco-citizenship and education for sustainable development” at the University of Barcelona. Email: info@gk4d.eu Evren Tok is an assistant Professor at Hamad Bin Khalifa University, Public Policy in Islam Program, Faculty of Islamic Studies, Doha/Qatar. Evren Tok obtained his collaborative Ph.D degree from the School of Public Policy and Administration and Institute of Political Economy at Carleton University, Ottawa/Canada. He previously obtained his MA degree from the Institute of Political Economy at Carleton University. Email: etok@qfis.edu.qa 1. Introduction Water, Energy and Food Nexus (WEF-N) signals high level of interconnectedness and interdependency between the three resources. The issue of inter-linkages has been very difficult to address from the original Rio 1992 onward. On the one hand, these resources have been exposed to significant external factors such as a growing population, changing economies, international trade, governance, health impacts, environmental impacts, and climate change. On the other hand, WEF-N is interlinked closely with public policies and stakeholder democracy (via policy-makers, media and social movements), as they define the strategies and courses of action by states and non-state key actors, either at local, national, or at regional levels -see figure-. This chapter acknowledges the vitality of the WEF-N by recognizing both aspects, however, it focuses more on the latter dimension as sustainable development requires. It is crucial to note that state action is no longer the only parameter, as non-state, international organizations, media and civil society, market
  48. 48. 2 based actors, think tanks and many other interest groups, advocacy coalitions, epistemic communities and networks are part of the WEF-N albeit with varying stakes, expectations and roles. 2. About and Resources: The United Nations decided to organize RIO+20, the United Nations Conference on Sustainable Development to commemorate the 40th anniversary of UNEP and the 20th anniversary of the Rio Earth Summit (UNCED, Rio 1992). The UN General Assembly “Encourages the active participation of all major groups, as identified in Agenda 21 and further elaborated Implementation Plans”. The concept is bringing the state and non-state actors to build local/national, regional and global consultations mechanisms in view to tackle cooperatively the issues of inclusiveness, democracy and sustainable development within a broad approach. In this context, Stakeholder Forum for Sustainable Future conducted an assessment for the United Nations to review the previous commitments, Rio Principles and Agenda 21, adopted since UNCED Rio 1992, and they found a lot had not been implemented. All UN environment and sustainable development summits since 1972 were to agree on Global Action Plan and wide-ranging of commitments at national, regional and international scopes to obstruct the deterioration of the human environment and continue to find out how “to govern better together only one Earth”. UNCSD (or Rio+20) focused on 4 themes: ● Review of previous commitments ● Institutional framework for sustainable development. ● Green economy in the context of sustainable development and poverty eradication ● Emerging issues. One of the vital meetings that input to the Rio+20 was the “Bonn 2011 Nexus Conference (16-18 November 2011), The Water, Energy and Food Security Nexus – Solutions for a Green Economy”. The conference goals were to create a better understanding of the inter-linkages between the sectors of energy, food and water and develop a joint perspective on common changes and their interrelations and to look at options and solutions and what an enabling framework with incentives for these topics would bear the largest positive impact potential.
  49. 49. 3 In 2009, Johan Rockström lead an international group of 28 leading academics and have identified a set of “nine planetary boundaries” essential for human survival, and attempted to quantify just how far seven of these systems have been pushed already. They then estimated how much further we can go before our own survival is threatened. Beyond these boundaries there is a risk of "irreversible and abrupt environmental change" which could make Earth less habitable. Boundaries can help identify where there is room and define a "safe space for human development", which is an improvement on approaches aiming at just minimizing human impacts on the planet. We need to recognize we are living in a more and more resource-constrained world. With easy exploitation of natural resources coming to an end in the next few decades, our world will be facing severe constraints to economic growth and human well-being. Current projections indicate rising future demands for water, energy and food, and predict subsequent strains on the natural systems. These trends send a clear message to decision-makers in governments, business and civil society: the way in which countries deal with water, energy and food security will heavily influence economic growth, human well-being and the environment we live in and rely on. ● Population growth: Expected to reach 9 billion by 2050 and 8 billion by 2024 ● Economic prosperity: There will be a rising economic prosperity in some of the emerging economies particularly in India and China ● Increasing urban world: by 2030 over 60% of people will live in urban areas ● Increase in energy demand: With more people and more people developing there will be an increased demand for energy provision and that energy provision has to be cleaner energy provision. With an expected economic growth rate of 6% p.a. in developing countries this will drive up global demand for energy by 30-40% by 2050 ● Increase in demand for food: How we feed the additional 2 billion people and increased consumption rates in certain countries, as they develop, current projections are that we will need agriculture production to increase by 70% by 2050 to meet the global demand for food; ● Increased need for water: Already 1.1 billion people lack access to safe drinking water. The population growth per year is around 80 million people which requires an additional
  50. 50. 4 64 billion cubic meters of water according to the UN. Demand for water will exceed global availability by 40 % in 2030 ● If you add on to this the impacts of climate change then clearly we have a set of global trends that are starting to converge and which will require considerable political leadership in all sectors governments, industry, UN and other stakeholders Global trends (Global trends developed by Felix Dodds in 2012). Why WEF-N is important? In our context, in an urbanized and wealthy part of the planet Earth, people have significant and considerable footprint and pressure on water, energy and food demands, we are accelerating ecosystems degradation. WEF are interconnected in important -and obvious- ways, actions in one sector either help or harm the other two. WEF-N is a perspective and approach toward a transformation and identification of new opportunities and innovations: ● It increases the understanding of interdependence across water, energy and food policies and strategies ● it helps to move beyond silos and ivory towers that impede the interdisciplinary solutions ● it opens the eyes for mutually beneficial responses and potential of local and international cooperation ● it helps designing, developing and implementing coherent policies, strategies, programs and investments to exploit synergies and mitigate tradeoffs among WEF sustainable development goals. With active participation, partnership and good governance among state and non-state actors, WEF-N perspective provides an informed and transparent framework for determining and resolving tradeoffs to meet increasing demands without compromising sustainability 3. Concerted state action and collaboration An urgent question we need to tackle pertains to the interstices of the WEF-N and sustainable development. Sustainability is sought via policy coherence, as water, energy and food security are highly interdependent, sustainable development should be considered not only an issue of governing resources, but also ensuring that economic and political context is suitable for policy dialogue, formulation and
  51. 51. 5 implementation (law, incentives and awareness). It has to be underlined also that the strength of the relation between the WEF-N and sustainable development requires continuous cooperation between Intergovernmental, Governmental and Non-Governmental stakeholders. According to The Global Risk 2011 report, WEF-N is a risk that fundamentally threatens human, social and political security. WEF are interconnected, actions in one sector either help or harm the other two, thus there is a need for creating a holistic framework –by policy planners and makers- that explicitly define manage and inform the link and tradeoffs between the sectors and explain the effect one has on another. Higher levels of collaboration in setting future resource management strategies and policies are thus a must. Governance failure in terms of managing these shared and interconnected resources create tensions that can lead to conflicts at local, national, sub-regional and regional levels. It is at these levels that most opportunities and innovations can be found and carried out for improving resource efficiency and managing trade offs between these vital sectors (integrative thinking, strategic planning) to come through highlighting the intimate level of interconnectedness. How to make it work? ● Increase policy coherence (identification, formulation, implementation, evaluation and monitoring) ● Accelerate access (Rights-Based Approach to Development) ● Create more with less and value natural infrastructure; ● Mobilize consumer influence and set the right incentives ● Establish mechanisms for policy coherence and development Work toward new institutional arrangements ● Mobilize academic and non-academic communities; ● Promote access to information and stakeholder democracy and raise awareness on integrated resource management. 4. Media as Partners for WEF-N The UN sixty-sixth session (September, 2012) recognized that sustainable development requires urgent and concrete action involving a partnership between civil society, governments and the private sector. In our context, we need deeper, wider and better coordinated activities through the region for partnership closer to people (Citizens as partners for WEF-N), a more coherent

×