Data Access 2.0?     …please welcome…  Spring Data!        Oliver Gierke
Oliver GierkeSpring DataCore/JPA/MongoDBogierke@vmware.comwww.olivergierke.deolivergierke
What to expect?
How?Why?        What?
A Developer‘s View5
What to expect?     NOT!
What to expect? NOT!7
Retrospect
Relational databases
Scaling
Data structures
Hibari Voldemort   Membase               Riak    Cassandra    RedisSimpleDB    (No)SQL            MongoDB            Orien...
Graphs
Documents
Column families
Key Value
Forest for the woods?
A Developer‘s View18
There‘s someSpring for that!
Spring Data
"   … provide a familiar and    consistent Spring-based    programming model while    not over-abstracting custom    trait...
Spring Data  JDBC   JPA
Spring Data  JDBC   JPA
Spring Data  JDBC   JPA
Spring Data  JDBC   JPA
Spring Data  JDBC   JPA
Building blocks
Spring
Mapping
Templates
Repositories
Repositories        Querydsl32
DEMO
Wrap up
Wrap up• Sophisticated mapping support• Templates• Repositories• Querydsl• Spring namespace• Geospatial support• Cross-sto...
Questions?
Resources•   www.springframework.org/spring-data•   github.com/SpringSource/spring-data-mongodb•   http://www.se-radio.net...
Upcoming SlideShare
Loading in...5
×

Data Access 2.0? Please welcome, Spring Data!

1,036

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,036
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Data Access 2.0? Please welcome, Spring Data!

  1. 1. Data Access 2.0? …please welcome… Spring Data! Oliver Gierke
  2. 2. Oliver GierkeSpring DataCore/JPA/MongoDBogierke@vmware.comwww.olivergierke.deolivergierke
  3. 3. What to expect?
  4. 4. How?Why? What?
  5. 5. A Developer‘s View5
  6. 6. What to expect? NOT!
  7. 7. What to expect? NOT!7
  8. 8. Retrospect
  9. 9. Relational databases
  10. 10. Scaling
  11. 11. Data structures
  12. 12. Hibari Voldemort Membase Riak Cassandra RedisSimpleDB (No)SQL MongoDB OrientDB CouchDB HBase Sones Neo4J
  13. 13. Graphs
  14. 14. Documents
  15. 15. Column families
  16. 16. Key Value
  17. 17. Forest for the woods?
  18. 18. A Developer‘s View18
  19. 19. There‘s someSpring for that!
  20. 20. Spring Data
  21. 21. " … provide a familiar and consistent Spring-based programming model while not over-abstracting custom traits of the specific store.
  22. 22. Spring Data JDBC JPA
  23. 23. Spring Data JDBC JPA
  24. 24. Spring Data JDBC JPA
  25. 25. Spring Data JDBC JPA
  26. 26. Spring Data JDBC JPA
  27. 27. Building blocks
  28. 28. Spring
  29. 29. Mapping
  30. 30. Templates
  31. 31. Repositories
  32. 32. Repositories Querydsl32
  33. 33. DEMO
  34. 34. Wrap up
  35. 35. Wrap up• Sophisticated mapping support• Templates• Repositories• Querydsl• Spring namespace• Geospatial support• Cross-store persistence
  36. 36. Questions?
  37. 37. Resources• www.springframework.org/spring-data• github.com/SpringSource/spring-data-mongodb• http://www.se-radio.net/2010/07/episode-165-nosql-and- mongodb-with-dwight-merriman• http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs- redis
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×