Texas pres oct_2008

1,051 views
961 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,051
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
28
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Texas pres oct_2008

  1. 1. Algae Energy - Challenges & Efforts Narasimhan Santhanam, Oilgae Presentation in Oct, 2008, Texas, USA
  2. 2. How difficult is it to achieve the energy Holy Grail?
  3. 3. Contents <ul><li>For each of the various aspects of algal energy </li></ul><ul><ul><li>Problems present </li></ul></ul><ul><ul><li>Efforts & solutions </li></ul></ul>
  4. 4. Aspects Considered <ul><li>End products </li></ul><ul><li>Strains </li></ul><ul><li>Oil yields </li></ul><ul><li>GMOs </li></ul><ul><li>Methods to grow algae </li></ul><ul><li>Choice of cultivation plant </li></ul><ul><li>Problems in cultivation </li></ul><ul><li>Open pond systems </li></ul><ul><li>Photobioreactors </li></ul><ul><li>Harvesting </li></ul><ul><li>Extraction </li></ul><ul><li>Transesterification </li></ul><ul><li>Energy input/output </li></ul><ul><li>Land requirements </li></ul><ul><li>Scaling up </li></ul><ul><li>Quality of biodiesel </li></ul>
  5. 5. End Products <ul><li>Biodiesel </li></ul><ul><li>Ethanol </li></ul><ul><li>Hydrogen </li></ul><ul><li>Methane </li></ul><ul><li>Biomass </li></ul>
  6. 6. Biodiesel <ul><li>Greenfuel - recycled CO2 </li></ul><ul><li>Solazyme - fermentation </li></ul><ul><li>Blue Marble - polluted water systems </li></ul><ul><li>Inventure - algae-jet-fuel </li></ul><ul><li>Aquaflow - algae in sewage </li></ul><ul><li>Aurora - GM algae </li></ul><ul><li>Solix - CO2 from breweries </li></ul>
  7. 7. Biodiesel - continued <ul><li>Seambiotic - CO2 from powerplants </li></ul><ul><li>Cellena </li></ul>
  8. 8. Ethanol <ul><li>Ethanol from GM cyanobacteria (Univ of Hawaii) </li></ul><ul><li>Algodyne - algae PBR that can produce multiple end products (fuels), including ethanol </li></ul><ul><li>Algenol - “algae produce ethanol in the gas form” </li></ul>
  9. 9. Hydrogen <ul><li>Using hydrogenase enzymes (triggered by sulphur deprivation) - biophotolysis </li></ul><ul><li>Using Cu to block oxygen generation </li></ul><ul><li>Manipulating genes that control the amount of chlorophyll </li></ul><ul><li>DIY Algae Hydrogen Kit - Amy Franceschini & Jonathan Meuser - biophotolysis </li></ul>
  10. 10. Methane <ul><li>Methane production by pyrolysis (Wu et al, 1999) - direct pyrolysis of marine nanoplankton </li></ul>
  11. 11. Biomass <ul><li>“ Under favourable conditions, some algae strains have produced over 180 T / ha /yr of biomass” </li></ul><ul><li>Solena - Uses high temperatures to gasify algae. </li></ul>
  12. 12. Strains <ul><li>NREL’s ASP did not specify any one species as the best, though they concluded diatoms and green algae were promising </li></ul><ul><li>Microalgae or macroalgae? </li></ul><ul><li>Blue Marble - wild algae blooms </li></ul><ul><li>Solazyme - Dunaliella species </li></ul><ul><li>C. reinhardtii - sulphur deprived to produce hydrogen </li></ul>
  13. 13. Strains <ul><li>Others: </li></ul><ul><ul><li>Neochloris oleoabundans </li></ul></ul><ul><ul><li>Scenedesmus dimorphus </li></ul></ul><ul><ul><li>Euglena gracilis </li></ul></ul><ul><ul><li>Prymnesium parvum </li></ul></ul><ul><ul><li>Phaedactylum carterae </li></ul></ul><ul><ul><li>Tetraselmius chui </li></ul></ul><ul><ul><li>Tetraselmius suecica </li></ul></ul><ul><ul><li>Isochrysis galbana </li></ul></ul><ul><ul><li>Nannochloropsis salina </li></ul></ul><ul><ul><li>Botryococcus braunii </li></ul></ul>
  14. 14. Oil Yield <ul><li>Increasing oil yield by: </li></ul><ul><ul><li>Nutrient deprivation - Sulphur & Nitrogen deprivation </li></ul></ul><ul><ul><li>Silicon depletion </li></ul></ul><ul><li>ACCase gene placed to increase fatty acid </li></ul>
  15. 15. GMO <ul><li>PetroAlgae - Environmentally-friendly algae </li></ul><ul><li>Solazyme - Optimizing biochemical pathways for hydrocarbon production </li></ul>
  16. 16. Photosynthesis or Fermentation? <ul><li>Photosynthesis - many companies </li></ul><ul><li>Fermentation - Solazyme </li></ul><ul><li>FAO - “direct extraction of lipids appears to be a more efficient method for obtaining energy, than fermentation” </li></ul>
  17. 17. Choice of Plant <ul><li>Single or multi-purpose </li></ul><ul><li>Multi-purpose </li></ul><ul><ul><li>Combined with power plants </li></ul></ul><ul><ul><li>Combined with wastewater treatments and sewage </li></ul></ul><ul><ul><li>Greenfuel - power plants </li></ul></ul><ul><ul><li>Aquaflow - sewage </li></ul></ul><ul><ul><li>Inventure - power plants? </li></ul></ul>
  18. 18. Cultivation Problems <ul><li>Formulation of Medium </li></ul><ul><ul><li>Calcium, Magnesium can cause precipitation problems </li></ul></ul><ul><ul><li>Water might require conditioning </li></ul></ul><ul><ul><li>Montana Micronutrient Booster - GSPI </li></ul></ul>
  19. 19. Cultivation Problems <ul><li>Provision of CO2 </li></ul><ul><ul><li>CO2 could cover a large part of operating costs </li></ul></ul><ul><ul><li>Covered area carbonators - bubble covers </li></ul></ul><ul><ul><li>In-pond carbonation sumps </li></ul></ul><ul><ul><li>Recycling of non-lipid carbon from extraction residues </li></ul></ul>
  20. 20. Cultivation Problems <ul><li>Water Circulation </li></ul><ul><ul><li>Paddle wheels </li></ul></ul><ul><ul><li>Airlift pump </li></ul></ul><ul><ul><li>Archimedes screw pump </li></ul></ul><ul><ul><li>Gas lift mixing </li></ul></ul>
  21. 21. Problems in Open Pond <ul><li>Light penetration </li></ul><ul><ul><li>Circulate algae using paddle wheels </li></ul></ul><ul><ul><li>Placing the light in the system - submerged into the tank </li></ul></ul><ul><ul><li>Passive optical system - Bionavitas </li></ul></ul>
  22. 22. Problems in Open Pond <ul><li>Odour related problems </li></ul><ul><ul><li>Result mainly owing to lack of oxygen </li></ul></ul><ul><ul><li>Planned cultivation and harvesting should take care of this </li></ul></ul>
  23. 23. Problems in Open Pond <ul><li>Contamination, temperature, pH & salinity fluctations </li></ul><ul><ul><li>Owing to: </li></ul></ul><ul><ul><ul><li>Temperature & light variances </li></ul></ul></ul><ul><ul><ul><li>Infiltration from local algae </li></ul></ul></ul><ul><ul><ul><li>Evaporation, dust particles, rain. </li></ul></ul></ul><ul><ul><li>Solution </li></ul></ul><ul><ul><ul><li>Hybrid algae product system - cross between open and closed pond systems - GSPI </li></ul></ul></ul><ul><ul><ul><li>Combo of open pond and PBR - Enhanced Biofuels & Technologies </li></ul></ul></ul>
  24. 24. Photobioreactor Problems <ul><li>Choice of PBR </li></ul><ul><ul><li>Dynamic Biogenics develops low-cost, scalable bioreactors </li></ul></ul><ul><ul><li>Solix B iofuels - “Massively scalable PBRs” </li></ul></ul><ul><ul><li>Texas Clean Fuels - optimized for CO2 sequestration and biofuel feedstock production </li></ul></ul><ul><ul><li>Valcent - vertical bioreactor </li></ul></ul>
  25. 25. Photobioreactor Problems <ul><li>Choice of PBR </li></ul><ul><ul><li>Origin Oil - Helix bioreactor </li></ul></ul><ul><ul><li>Academic & Univ Centre in Nove Hrady - Czech Republic - Penthouse PBR using solar concentrators with linear fresnel lenses </li></ul></ul>
  26. 26. Photobioreactor Problems <ul><li>Cost of PBR </li></ul><ul><ul><li>DEC Simgae system - simple, benefits of both & closed systems </li></ul></ul>
  27. 27. Harvesting <ul><li>Method of Harvesting </li></ul><ul><ul><li>Besides simple sedimentation, all other methods are expensive </li></ul></ul><ul><ul><ul><li>The “expensive” methods - straining, filtering, flocculation </li></ul></ul></ul><ul><ul><li>Cost-effective (?) methods </li></ul></ul><ul><ul><ul><li>Induced bio-flocculation followed by sedimentation or flotation </li></ul></ul></ul><ul><ul><ul><li>AlgoDyne Ethanol Energy - new process to harvest biomass from marine algal blooms </li></ul></ul></ul>
  28. 28. Harvesting <ul><li>Long harvesting period </li></ul><ul><ul><li>GreenFuel - harvests algae daily </li></ul></ul><ul><ul><li>Advanced Biofuel Technologies - Over-expression of ACCase leads to overproduction of triglycerides </li></ul></ul>
  29. 29. Harvesting <ul><li>Long harvesting period </li></ul><ul><ul><li>GreenFuel - harvests algae daily </li></ul></ul><ul><ul><li>Advanced Biofuel Technologies - Over-expression of ACCase leads to overproduction of triglycerides </li></ul></ul>
  30. 30. Harvesting <ul><li>Time of Harvesting </li></ul><ul><ul><li>Ability to determine the right time to extract oil from feedstock is critical </li></ul></ul><ul><ul><li>Current methods to determine these are expensive, time consuming and unreliable </li></ul></ul><ul><ul><li>BioGauge “bio-profiling” technology - from International Energy Inc. </li></ul></ul>
  31. 31. Harvesting <ul><li>Harvesting Cost </li></ul><ul><ul><li>Aquaflow - developed a scalable method for harvesting algae in the wild </li></ul></ul>
  32. 32. Extraction <ul><li>Choice of extraction </li></ul><ul><ul><li>Primary </li></ul></ul><ul><ul><ul><li>Expeller </li></ul></ul></ul><ul><ul><ul><li>Solvent Extraction </li></ul></ul></ul><ul><ul><ul><li>Super critical fluid extraction </li></ul></ul></ul><ul><ul><li>Less well-known </li></ul></ul><ul><ul><ul><li>Enzymatic extraction </li></ul></ul></ul><ul><ul><ul><li>Osmotic shock </li></ul></ul></ul><ul><ul><ul><li>Ultrasonic assisted extraction </li></ul></ul></ul><ul><ul><ul><li>Soxhlet extraction </li></ul></ul></ul>
  33. 33. Extraction <ul><li>Cost of extraction </li></ul><ul><ul><li>Numbers quoted are quite high - what are the real numbers? </li></ul></ul><ul><li>Energy requirements </li></ul><ul><ul><li>OriginOil’s new method to extract oil without resorting to chemical solvents, using a process called lysing, built on their patented method of “Quantum Fracturing” </li></ul></ul>
  34. 34. Transesterification <ul><li>High FFA could create transesterification problems </li></ul><ul><ul><li>Basu & Norris (2005) have developed a process to produce esters from feedstock that have a high FFA content using calcium and barium acetate as a catalyst. </li></ul></ul><ul><ul><li>SRS Biodiesel - FSP-Series Acid Esterification pretreatment system for high-FFA feedstock </li></ul></ul>
  35. 35. Energy Input & Output <ul><li>Best-case - Macro-algae can generate 11000 MJ/dry algae & micro-algae 9500 MJ/T. </li></ul><ul><li>Solena’s plasma gasification tech consumes less than 1/4 of the energy it produces </li></ul>
  36. 36. Land Requirements <ul><li>Growing algae on solid carriers in ocean - Kansas State Univ. - Jun 2008 </li></ul><ul><li>Nutrients for algae in sea water - algae grew much faster when supplied with dust from a desert </li></ul><ul><li>Valcent’s Vertigro uses area above a plot of land. </li></ul><ul><li>Algae grown in sewage ponds - Aquaflow Bionomic </li></ul>
  37. 37. Scaling Up <ul><li>When transferred to outdoor test facility, growth rate, % oil yield decreased dramatically from those from laboratory results (NREL) (biodiesel produced per acre in OTF was just 10% of that produced in lab) </li></ul>
  38. 38. Algae Biodiesel Quality <ul><li>Not enough data </li></ul><ul><li>High FFA content </li></ul><ul><li>Solazyme tests algae biodiesel that has superior performance under cold weather conditions (algae engineered to produce an oil with optimized fatty acid profile) </li></ul><ul><li>One way of bridging quality gaps is to blend biodiesel from different feedstocks? </li></ul>
  39. 39. Conclusion <ul><li>We are still not yet there, but the clarity about the problems we face and the diversity of solutions being attempted make the goal look more reachable than ever before. </li></ul>
  40. 40. Thank You

×