Your SlideShare is downloading. ×
Calculus :Tutorial 4
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Calculus :Tutorial 4

152
views

Published on

Published in: Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
152
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. PMB 3004: Calculus Tutorial 41. Use the first principle to find the derivatives for the following functions: a) f ( x)  5 c) f ( x)  1  3x t 2 1 b) f ( x)  2 x2  2 x d) s(t )  t2. Differentiate the following functions: a) y  0 1 x2 b) y   3x e) y = 3 3x 2 10 f) y = 2 x 4  4 x 3  1 c) y  2 x3  . x 2 x  5x2 g) y = 2 x 2  3x 3 d) y  x h) f ( x)  (3x  1)(7 x  2) j) h( x)  x 2 (2 x 2  5) i) g ( x)  (5  3x)( x3  2 x 2 ) k) y  ( x 2  3x  2)(2 x 2  x  3) 2 6  2w l) y  (7)( ) o) h( w)  3 w2  4 2x  3 v5  8 m) y  p) u (v)  4x 1 v f ( x)  5x x 5 n) q) y  x 1 8 x