• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
X2 t02 04 forming polynomials (2013)
 

X2 t02 04 forming polynomials (2013)

on

  • 553 views

 

Statistics

Views

Total Views
553
Views on SlideShare
267
Embed Views
286

Actions

Likes
0
Downloads
14
Comments
0

1 Embed 286

http://virtualb15.edublogs.org 286

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    X2 t02 04 forming polynomials (2013) X2 t02 04 forming polynomials (2013) Presentation Transcript

    • Forming Polynomials With The Roots Of Another
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots;
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,   
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y y let y  kx and substitute x  k
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , (3)   c,   c,   c,  let y  1 1 and substitute x  x y y let y  kx and substitute x  k
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  2 ,  2 ,  2 , 
    • Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  ,  ,  ,  2 2 2 let y  x 2 and substitute x  y 1 2
    • e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are;
    • e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,   
    • e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y 
    • e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y
    • e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y 1  y 2  2 y3  0
    • b)   1,   1,   1
    • b)   1,   1,   1 let y  x  1 x  y 1
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0  
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2
    • b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2 y3  2 y 2  y  4 y3  2 y 2  y  4  0
    • d) 1  2 , 1  2 , 1 2
    • d) 1  2 , 1  2 let y  , 1 2 1 x2 x y  1 2
    • d) 1  2 , 1  2 , 1 2 1 let y  2 x x y  y 1 2  3 2 y  1 2 20
    • d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2
    • d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y 3 2
    • d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 3 2
    • d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 y 2  2 y 1  4 y3 4 y3  y2  2 y 1  0 3 2
    • e) Find  2   2   2
    • e) Find  2   2   2 2   2  2      2  2
    • e) Find  2   2   2 2   2  2      2  2  0   21  2 2
    • e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c)
    • e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a
    • e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2
    • e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2 Cambridge: Exercise 5C; 1 to 11, 13, 14, 15 Patel: Exercise 5E; 9, 10, 11, 14, 16, 18, 19, 23, 24, 27, 30, 32, 34, 35