Like this presentation? Why not share!

# X2 t02 04 forming polynomials (2013)

## on Dec 12, 2013

• 553 views

### Views

Total Views
553
Views on SlideShare
267
Embed Views
286

Likes
0
14
0

### 1 Embed286

 http://virtualb15.edublogs.org 286

### Report content

• Comment goes here.
Are you sure you want to

## X2 t02 04 forming polynomials (2013)Presentation Transcript

• Forming Polynomials With The Roots Of Another
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots;
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,   
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , let y  1 1 and substitute x  x y y let y  kx and substitute x  k
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    (2) k , k , k , (3)   c,   c,   c,  let y  1 1 and substitute x  x y y let y  kx and substitute x  k
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  2 ,  2 ,  2 , 
• Forming Polynomials With The Roots Of Another If  ,  ,  ,  are the roots of a polynomial, to form an equation with roots; 1 1 1 (1) , , ,    let y  1 1 and substitute x  x y (2) k , k , k , y let y  kx and substitute x  k (3)   c,   c,   c,  let y  x  c and substitute x  y  c ( 4)  ,  ,  ,  2 2 2 let y  x 2 and substitute x  y 1 2
• e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are;
• e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,   
• e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y 
• e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y
• e.g. If  ,  ,  are the roots of x 3  x  2  0, form an equation whose roots are; a) 1 1 1 , ,    1 x 1 x y let y  3 1 1    20  y y 1  y 2  2 y3  0
• b)   1,   1,   1
• b)   1,   1,   1 let y  x  1 x  y 1
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0  
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2
• b)   1,   1,   1 let y  x  1 x  y 1  y  13   y  1  2  0 y3  3 y 2  3 y 1  y 1  2  0 y3  3 y2  4 y  0 c)  2 ,  2 ,  2 let y  x 2 x y 1 2  y   1 2 3 1    y2  2  0   3 2 1 2 y  y 20 1 2 y  y  1  2 y  y  1  4 2 y3  2 y 2  y  4 y3  2 y 2  y  4  0
• d) 1  2 , 1  2 , 1 2
• d) 1  2 , 1  2 let y  , 1 2 1 x2 x y  1 2
• d) 1  2 , 1  2 , 1 2 1 let y  2 x x y  y 1 2  3 2 y  1 2 20
• d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2
• d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y 3 2
• d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 3 2
• d) 1  2 , 1  2 , 1 2 1 let y  2 x x y 1  2 y  3 2 y y  3 2  1 2 20  y  1  2  y  1  2 y  y  12  4 y 3 y 2  2 y 1  4 y3 4 y3  y2  2 y 1  0 3 2
• e) Find  2   2   2
• e) Find  2   2   2 2   2  2      2  2
• e) Find  2   2   2 2   2  2      2  2  0   21  2 2
• e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c)
• e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a
• e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2
• e) Find  2   2   2 2   2  2      2  2  0   21  2 2 OR using equation found in c) 2   2  2 b  a 2  1  2 Cambridge: Exercise 5C; 1 to 11, 13, 14, 15 Patel: Exercise 5E; 9, 10, 11, 14, 16, 18, 19, 23, 24, 27, 30, 32, 34, 35