Upcoming SlideShare
×

# X2 t01 08 locus & complex nos 2 (2013)

795 views
685 views

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Major arc of a circle standing on a chord joining (1,-2) and (0,-3), but not including those points, the arc would be on the left side of the chord

Are you sure you want to  Yes  No
• how would you sketch arg(z-(1-2i))-arg(z+3i)=pi/6

Are you sure you want to  Yes  No
• Be the first to like this

Views
Total views
795
On SlideShare
0
From Embeds
0
Number of Embeds
220
Actions
Shares
0
23
2
Likes
0
Embeds 0
No embeds

No notes for slide

### X2 t01 08 locus & complex nos 2 (2013)

1. 1. Locus and Complex Numbers
2. 2. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z
3. 3. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)
4. 4. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or 
5. 5. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or   is purely imaginary  Re   0, arg     2
6. 6. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or   is purely imaginary  Re   0, arg     2  linear function  arg      locus is an arc of a circle  linear function 
7. 7. Locus and Complex Numbers   f  z  , find the locus of  or z given some condition for  or z (Make the condition the subject)  is purely real  Im   0, arg   0 or   is purely imaginary  Re   0, arg     2  linear function  arg      locus is an arc of a circle  linear function   * minor arc if   * major arc if   2  * semicircle if   2  2
8. 8. z2 e.g .i  Find the locus of w if w  ,z 4 2
9. 9. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2
10. 10. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2
11. 11. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1
12. 12. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1
13. 13. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1 2 4 w 1
14. 14. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1 2 4 w 1 w 1  1 2
15. 15. z2 e.g .i  Find the locus of w if w  ,z 4 2 z2 w z zw  z  2 z w  1  2 2 z w  1 2  4 w  1 2 4 w 1 w 1  1 2 1  locus is a circle, centre 1,0  and radius 2 1 2 2 i.e.  x  1  y  4
16. 16. z 1 ii  Find the locus of z if w  and w is purely real z 1
17. 17. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy
18. 18. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2
19. 19. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0
20. 20. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0
21. 21. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0
22. 22. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0
23. 23. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
24. 24. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy x  2  1  i x  1 y  i x  1 y  y 2  x  12  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
25. 25. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0 
26. 26. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y x
27. 27. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x
28. 28. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x
29. 29. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x
30. 30. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x locus is y  0, excluding  1,0 
31. 31. z 1 ii  Find the locus of z if w  and w is purely real z 1  x  1  iy  x  1  iy OR If w is purely real then arg w  0 or  w   x  1  iy  x  1  iy  z  1   0 or  x 2  1  i x  1 y  i x  1 y  y 2 i.e. arg   2  z 1  x  1  y 2 If w is purely real then Imw  0 i.e.   x  1 y   x  1 y  0  xy  y  xy  y  0  2y  0 y0  locus is y  0, excluding 1,0   z  1  0, bottom of fraction  0  arg z  1  arg z  1  0 or  y -1 1 x locus is y  0, excluding  1,0  Note : locus is y  0, excluding 1,0  only i.e. answer the original question
32. 32.  z  iii  Find the locus of z if arg   z  4 6
33. 33.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6
34. 34.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6
35. 35.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y x
36. 36.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 4x  6
37. 37.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 4x  6 NOTE: arg z  arg z-4   below axis
38. 38.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 2 4x  6 NOTE: arg z  arg z-4   below axis
39. 39.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis
40. 40.  z  iii  Find the locus of z if arg   z  4 6  z  arg   z  4 6  arg z  arg z  4   6 y 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
41. 41.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6 arg z  arg z  4   y  6 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
42. 42.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
43. 43.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y  centre is 2,2 3  2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30
44. 44.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y  centre is 2,2 3  2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30 r 2  2 2  2 3  2
45. 45.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y  centre is 2,2 3  2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis 30 r 2  2 2  2 3  2 r 2  16 r4
46. 46.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y r 2  2 2  2 3  2 r 2  16 r4  centre is 2,2 3   locus is the major arc of the circle 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis  x  2   y  2 3   16 formed by the chord joining 0,0  and 4,0  but not 2 2 30 including these points.
47. 47.  z  iii  Find the locus of z if arg   z  4 6 y  z   tan 60 arg  2  z  4 6  y  2 tan 60 arg z  arg z  4   6 2 3 y r 2  2 2  2 3  2 r 2  16 r4  centre is 2,2 3   locus is the major arc of the circle 2 r 4x (2,y)  6 NOTE: arg z  arg z-4   below axis  x  2   y  2 3   16 formed by the chord joining 0,0  and 4,0  but not 2 2 30 including these points. Patel: Exercise 4N; 5, 6 Cambridge: Exercise 1F; 10 to 20 HSC Geometrical Complex Numbers Questions