• Save
12 x1 t08 02 general binomial expansions (2013)
Upcoming SlideShare
Loading in...5
×
 

12 x1 t08 02 general binomial expansions (2013)

on

  • 564 views

 

Statistics

Views

Total Views
564
Views on SlideShare
297
Embed Views
267

Actions

Likes
0
Downloads
0
Comments
0

1 Embed 267

http://virtualb15.edublogs.org 267

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

12 x1 t08 02 general binomial expansions (2013) 12 x1 t08 02 general binomial expansions (2013) Presentation Transcript

  • General Expansion ofBinomials
  • General Expansion ofBinomials kkknxxC 1inoftcoefficientheis
  • General Expansion ofBinomials kkknxxC 1inoftcoefficientheisknCkn
  • General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101knCkn
  • General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110 knCkn
  • General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110 knCkn
  • General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110        444334222431440433232322 xCxCxCxCC knCkn
  • General Expansion ofBinomials kkknxxC 1inoftcoefficientheis  nnnnnnnxCxCxCCx  22101 432.. xge which extends to;  nnnnnnnnnnnnnbCabCbaCbaCaCba   11222110        444334222431440433232322 xCxCxCxCC 432812162169616 xxxx knCkn
  • Pascal’s Triangle Relationships
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx 
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlooking
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111 
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111 
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111  l"symmetricaistrianglesPascal"11where2   nkCC knnkn
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111  l"symmetricaistrianglesPascal"11where2   nkCC knnkn  13 0  nnnCC
  • Pascal’s Triangle Relationships  11where1 111 nkCCC knknkn     1111nnxxx  111111111011  nnnkknkknnnxCxCxCxCCx kxoftscoefficienatlookingknCLHS      knknCCRHS 11111 knknCC 111  knknknCCC 111  l"symmetricaistrianglesPascal"11where2   nkCC knnkn  13 0  nnnCCExercise 5B; 2ace, 5, 6ac,10ac, 11, 14