• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
12 x1 t02 01 differentiating exponentials (2014)
 

12 x1 t02 01 differentiating exponentials (2014)

on

  • 289 views

 

Statistics

Views

Total Views
289
Views on SlideShare
221
Embed Views
68

Actions

Likes
0
Downloads
14
Comments
0

1 Embed 68

http://virtualb15.edublogs.org 68

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    12 x1 t02 01 differentiating exponentials (2014) 12 x1 t02 01 differentiating exponentials (2014) Presentation Transcript

    • Exponentials
    • Exponentials y x
    • Exponentials y y  ax a  1 1 x
    • Exponentials ya 0  a  1 x y y  ax a  1 1 x
    • Exponentials ya 0  a  1 x y 1 y  ax a  1  y  ax   0  a  1    x
    • Exponentials ya 0  a  1 x y x y  a    a  1  1 y  ax a  1  y  ax   0  a  1    x
    • Exponentials ya 0  a  1 x y x y  a    a  1  1 y  ax a  1  y  ax   0  a  1    x domain : all real x
    • Exponentials ya 0  a  1 x y x y  a    a  1  1 y  ax a  1  y  ax   0  a  1    x domain : all real x range : y  0
    • Exponentials ya 0  a  1 x y x y  a    a  1  1 y  ax a  1  y  ax   0  a  1    x domain : all real x range : y  0 y  ex
    • ya x Exponentials y 0  a  1 x y  a    a  1  1 y  ax a  1  y  ax   0  a  1    x domain : all real x range : y  0 y  ex   1 e is an irrational number, it is defined as; lim1  n   n n
    • ya x Exponentials y 0  a  1 x y  a    a  1  1 y  ax a  1  y  ax   0  a  1    x domain : all real x range : y  0 y  ex   1 e is an irrational number, it is defined as; lim1  n   n n e  2.718281828
    • ya x Exponentials y 0  a  1 x y  a    a  1  1 y  ax a  1   y  ax  0  a  1    x domain : all real x range : y  0 y  ex 1  1  e is an irrational number, it is defined as; lim  n   n n e  2.718281828 e.g. e3  20.086 (to 3 dp)
    • Differentiating Exponentials
    • Differentiating Exponentials y  e f x
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx y  a f x
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx y  a f x dy  f  x log a a f  x  dx
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e x y  a f x dy  f  x log a a f  x  dx
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e x dy  ex dx y  a f x dy  f  x log a a f  x  dx
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e x dy  ex dx ii  y  e5 x y  a f x dy  f  x log a a f  x  dx
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e x dy  ex dx ii  y  e5 x dy  5e5 x dx y  a f x dy  f  x log a a f  x  dx
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e x dy  ex dx ii  y  e5 x dy  5e5 x dx y  a f x dy  f  x log a a f  x  dx iii  y  e 4 x 3
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e x dy  ex dx ii  y  e5 x dy  5e5 x dx y  a f x dy  f  x log a a f  x  dx iii  y  e 4 x 3 dy  4e 4 x  3 dx
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e dy  ex dx x ii  y  e 5x dy  5e5 x dx y  a f x dy  f  x log a a f  x  dx iii  y  e 4 x 3 dy  4e 4 x  3 dx iv  y  e x 2 3 x  2
    • Differentiating Exponentials y  e f x dy  f  x e f  x  dx e.g. i  y  e dy  ex dx x ii  y  e 5x dy  5e5 x dx y  a f x dy  f  x log a a f  x  dx iii  y  e 4 x 3 dy  4e 4 x  3 dx iv  y  e x 2 3 x  2 dy x 2 3 x  2  2 x  3e dx
    • (v) y  3 x 2 e 4 x
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 vi  y  e  2 3x 7
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2 
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2 
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 dy e x  3e x   e x e x   2 x dx e  3 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2 
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 dy e x  3e x   e x e x   2 x dx e  3 e 2 x  3e x  e 2 x  2 x e  3  e 3e x x  3 2 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2 
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 dy e x  3e x   e x e x   2 x dx e  3 e 2 x  3e x  e 2 x  2 x e  3  e 3e x x  3 2 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2  viii  Find the tangent to y  e 2 x  1 at the point 1, e 2  1
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 dy e x  3e x   e x e x   2 x dx e  3 e 2 x  3e x  e 2 x  2 x e  3  e 3e x x  3 2 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2  viii  Find the tangent to y  e 2 x  1 at the point 1, e 2  1 y  e2 x  1 dy  2e 2 x dx
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 dy e x  3e x   e x e x   2 x dx e  3 e 2 x  3e x  e 2 x  2 x e  3  e 3e x x  3 2 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2  viii  Find the tangent to y  e 2 x  1 at the point 1, e 2  1 y  e2 x  1 dy  2e 2 x dx dy when x  1,  2e 2 dx
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 dy e x  3e x   e x e x   2 x dx e  3 e 2 x  3e x  e 2 x  2 x e  3  e 3e x x  3 2 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2  viii  Find the tangent to y  e 2 x  1 at the point 1, e 2  1 y  e2 x  1 dy  2e 2 x dx dy when x  1,  2e 2 dx y  e 2  1  2e 2  x  1
    • (v) y  3 x 2 e 4 x dy  3 x 2 4e 4 x   e 4 x 6 x  dx  12 x 2 e 4 x  6 xe 4 x  6 xe 4 x 2 x  1 ex vii  y  x e 3 dy e x  3e x   e x e x   2 x dx e  3 e 2 x  3e x  e 2 x  2 x e  3  e 3e x x  3 2 vi  y  e  2 3x 7 6 dy 3x  7e  2  3e3 x  dx 6 3x 3x  21e e  2  viii  Find the tangent to y  e 2 x  1 at the point 1, e 2  1 y  e2 x  1 dy  2e 2 x dx dy when x  1,  2e 2 dx y  e 2  1  2e 2  x  1 y  e 2  1  2e 2 x  2e 2 2e 2 x  y  e 2  1  0
    • ix  y  4 x2
    • ix  y  4 x2 dy x2  2 xlog 4 4 dx
    • ix  y  4 x2 dy x2  2 xlog 4 4 dx  x  y  log x
    • ix  y  4 x2 dy x2  2 xlog 4 4 dx  x  y  log x x  ey
    • ix  y  4 x2 dy x2  2 xlog 4 4 dx  x  y  log x x  ey dx  ey dy
    • ix  y  4 x2 dy x2  2 xlog 4 4 dx  x  y  log x x  ey dx  ey dy dy 1  y dx e
    • ix  y  4 x2 dy x2  2 xlog 4 4 dx  x  y  log x x  ey dx  ey dy dy 1  y dx e 1  x
    • ix  y  4 x2 dy x2  2 xlog 4 4 dx  x  y  log x x  ey dx  ey dy dy 1  y dx e 1  x Exercise 13A; 1 to 4 ace etc, 6 to 8 ace, 10 to 12 ac Exercise 13B; 4, 7, 8 to 22 evens (not 18)