0
Upcoming SlideShare
×

# 11X1 T14 02 geometric series (2010)

442

Published on

Published in: Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
442
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
7
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript of "11X1 T14 02 geometric series (2010)"

1. 1. Geometric Series
2. 2. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term.
3. 3. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r.
4. 4. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T r 2 a
5. 5. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T r 2 a T  3 T2
6. 6. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T r 2 a T  3 T2 Tn r Tn1
7. 7. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T  3 T2 Tn r Tn1
8. 8. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar T  3 T2 Tn r Tn1
9. 9. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn r Tn1
10. 10. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1
11. 11. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32, 
12. 12. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  a  2, r  4
13. 13. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4
14. 14. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4  24 n1
15. 15. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4  24 n1  22  2 n 1  22  2 n2
16. 16. Geometric Series An geometric series is a sequence of numbers in which each term after the first is found by multiplying a constant amount to the previous term. The constant amount is called the common ratio, symbolised, r. T T1  a r 2 a T2  ar  T3 T3  ar 2 T2 Tn  ar n1 Tn r Tn1 e.g.i  Find r and the general term of 2, 8, 32,  Tn  ar n1 a  2, r  4  24 n1  22  2 n 1 Tn  22 n1  22  2 n2
17. 17. ii  If T2  7 and T4  49, find r
18. 18. ii  If T2  7 and T4  49, find r ar  7
19. 19. ii  If T2  7 and T4  49, find r ar  7 ar 3  49
20. 20. ii  If T2  7 and T4  49, find r ar  7 ar 3  49 r2  7
21. 21. ii  If T2  7 and T4  49, find r ar  7 ar 3  49 r2  7 r 7
22. 22. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. ar 3  49 r2  7 r 7
23. 23. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. ar 3  49 a  1, r  4 r2  7 r 7
24. 24. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 r 7
25. 25. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7
26. 26. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500
27. 27. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500
28. 28. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500
29. 29. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500 n  1  4.48 n  5.48
30. 30. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500 n  1  4.48 n  5.48 T6  1024, is the first term  500
31. 31. ii  If T2  7 and T4  49, find r (iii) find the first term of 1, 4, 16, … to ar  7 be greater than 500. Tn  14 n1 ar 3  49 a  1, r  4 r2  7 Tn  500 r 7 4n1  500 log 4n1  log 500 n  1log 4  log 500 n  1  4.48 n  5.48 T6  1024, is the first term  500 Exercise 6E; 1be, 2cf, 3ad, 5ac, 6c, 8bd, 9ac, 10ac, 15, 17, 18ab, 20a
1. #### A particular slide catching your eye?

Clipping is a handy way to collect important slides you want to go back to later.