11X1 T09 06 quotient and reciprocal rules (2010)
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

11X1 T09 06 quotient and reciprocal rules (2010)

on

  • 544 views

 

Statistics

Views

Total Views
544
Views on SlideShare
517
Embed Views
27

Actions

Likes
0
Downloads
9
Comments
0

2 Embeds 27

http://virtualb15.edublogs.org 26
http://www.slideshare.net 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

11X1 T09 06 quotient and reciprocal rules (2010) Presentation Transcript

  • 1. Calculus Rules
  • 2. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2
  • 3. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM”
  • 4. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x
  • 5. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x dy 1  2 x 1   x  2   1  2 x  2 dx
  • 6. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x dy 1  2 x 1   x  2   1  2 x  2 dx 1 2x  2x  1 2x 2
  • 7. Calculus Rulesd  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x e.g.  i  y  1 2x dy 1  2 x 1   x  2   1  2 x  2 dx 1 2x  2x  1 2x 2 1  1  2x  2
  • 8. Calculus Rulesd  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2   1  2 x  2 dx 1 2x  2x  1 2x 2 1  1  2x  2
  • 9. Calculus Rulesd  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x2  4  1 2x 2 1  1  2x  2
  • 10. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x 2  4  1  1 1  2 x  2 2  x  42  2 x2  x2  4 2 2   1  x2  4 1  2x  2
  • 11. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x 2  4  1  1 1  2 x  2 2  x  42  2 x2  x2  4 2 2   1  x2  4 1  2x  2 2  x 2  4  2  x 2  4   x 2  1    x2  4
  • 12. Calculus Rules d  u  vu   uv   3. Quotient Rule dx  v  v2 “SQUARE the BOTTOM, write down the BOTTOM and DIFF the TOP, MINUS write down the TOP and DIFF the BOTTOM” x 2x e.g.  i  y   ii  y  2 1 2x x 4 dy 1  2 x 1   x  2  1 2  1 1  x  4      2  x  4     2 2  2x  2 2 2x 1  2 x    2 dx dy  1 2x  2x dx  x 2  4  1  1 1  2 x  2 2  x  42  2 x2  x2  4 2 2   1  x2  4 1  2x  2 2  x 2  4  2  x 2  4   x 2  1   8  x2  4   x2  4 x2  4
  • 13. d  k   kv 4. Reciprocal Rule   2 dx  v  v
  • 14. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED”
  • 15. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 e.g.  i  y  x2
  • 16. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 e.g.  i  y  x2 dy 2 x  4 dx x
  • 17. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 e.g.  i  y  x2 dy 2 x  4 dx x 2  3 x
  • 18. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x  4 dx x 2  3 x
  • 19. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x dy 6  8 x   4  dx x dx  4 x 2  32 2  3 x
  • 20. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x dy 6  8 x   4  dx x dx  4 x 2  32 2 48 x  3   4 x  3 2 x 2
  • 21. d  k   kv 4. Reciprocal Rule   2 dx  v  v “MINUS the DERIVATIVE on the FUNCTION SQUARED” 1 6 e.g.  i  y   ii  y  x2 4 x2  3 dy 2 x dy 6  8 x   4  dx x dx  4 x 2  32 2 48 x  3   4 x  3 2 x 2 Exercise 7G; 1aceg, 2, 4a, 6a, 8a