Your SlideShare is downloading. ×
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

11X1 T05 04 point slope formula (2010)

217

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
217
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Point Slope Formula
  • 2. Point Slope Formula y  y1  m  x  x1 
  • 3. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6)
  • 4. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m 3  2 10  5  2
  • 5. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 10  5  2
  • 6. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2
  • 7. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0
  • 8. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 5 y  x 4 4
  • 9. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 5 y  x 4 4 3 required m   4
  • 10. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 y  3    x  2 3 5 4 y  x 4 4 3 required m   4
  • 11. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 y  3    x  2 3 5 4 y  x 4 y  12  3 x  6 4 4 3 3x  4 y  6  0 required m   4
  • 12. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR y  3    x  2 3 5 4 y  x 4 y  12  3 x  6 4 4 3 3x  4 y  6  0 required m   4
  • 13. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 5 4 y  x 4 y  12  3 x  6 4 4 3 3x  4 y  6  0 required m   4
  • 14. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 y  x 5 4  2, 3 : 3  2   4  3  k  0 4 4 4 y  12  3 x  6 3 3x  4 y  6  0 required m   4
  • 15. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 y  x 5 4  2, 3 : 3  2   4  3  k  0 4 y  12  3 x  6 4 4 6  k  0 3x  4 y  6  0 required m   3 k 6 4
  • 16. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 y  x 5 4  2, 3 : 3  2   4  3  k  0 4 y  12  3 x  6 4 4 6  k  0 3x  4 y  6  0 required m   3 k 6 4  3x  4 y  6  0
  • 17. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0
  • 18. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 9 6 y  x 4 4
  • 19. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 9 6 y  x 4 4 4 required m   9
  • 20. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 4 9 6 y  4    x  6 y  x 9 4 4 4 required m   9
  • 21. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 4 9 6 y  4    x  6 y  x 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
  • 22. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4 9 6 y  4    x  6 y  x 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
  • 23. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 6 y  4    x  6 y  x 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
  • 24. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
  • 25. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9
  • 26. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0
  • 27. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent;
  • 28. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously
  • 29. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously (ii ) substitute point of intersection into n
  • 30. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously (ii ) substitute point of intersection into n (iii ) if it satisfies the equation, then the lines are concurrent
  • 31. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously (ii ) substitute point of intersection into n (iii ) if it satisfies the equation, then the lines are concurrent Exercise 5D; 1e, 2c, 4abc (i), 5b, 7d, 9, 11, 13, 15, 17ab (i), 18ab (ii), 19, 22, 23c, 26*

×