Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# 11X1 T05 04 point slope formula (2010)

217

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
217
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
11
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. Point Slope Formula
• 2. Point Slope Formula y  y1  m  x  x1 
• 3. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6)
• 4. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m 3  2 10  5  2
• 5. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 10  5  2
• 6. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2
• 7. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0
• 8. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 5 y  x 4 4
• 9. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 5 y  x 4 4 3 required m   4
• 10. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 y  3    x  2 3 5 4 y  x 4 4 3 required m   4
• 11. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 y  3    x  2 3 5 4 y  x 4 y  12  3 x  6 4 4 3 3x  4 y  6  0 required m   4
• 12. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR y  3    x  2 3 5 4 y  x 4 y  12  3 x  6 4 4 3 3x  4 y  6  0 required m   4
• 13. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 5 4 y  x 4 y  12  3 x  6 4 4 3 3x  4 y  6  0 required m   4
• 14. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 y  x 5 4  2, 3 : 3  2   4  3  k  0 4 4 4 y  12  3 x  6 3 3x  4 y  6  0 required m   4
• 15. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 y  x 5 4  2, 3 : 3  2   4  3  k  0 4 y  12  3 x  6 4 4 6  k  0 3x  4 y  6  0 required m   3 k 6 4
• 16. Point Slope Formula y  y1  m  x  x1  e.g. (i) Find the equation of the line passing through (–3,4) and (2,–6) 46 m y  4  2  x  3 3  2 y  4  2 x  6 10  2x  y  2  0 5  2 (ii) Find the equation of the line passing through (2,–3) and is parallel to 3x + 4y – 5 =0 3 OR 3x  4 y  k  0 y  3    x  2 3 y  x 5 4  2, 3 : 3  2   4  3  k  0 4 y  12  3 x  6 4 4 6  k  0 3x  4 y  6  0 required m   3 k 6 4  3x  4 y  6  0
• 17. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0
• 18. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 9 6 y  x 4 4
• 19. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 9 6 y  x 4 4 4 required m   9
• 20. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 4 9 6 y  4    x  6 y  x 9 4 4 4 required m   9
• 21. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 4 9 6 y  4    x  6 y  x 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
• 22. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4 9 6 y  4    x  6 y  x 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
• 23. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 6 y  4    x  6 y  x 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
• 24. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 4 required m   4 x  9 y  60  0 9
• 25. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9
• 26. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0
• 27. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent;
• 28. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously
• 29. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously (ii ) substitute point of intersection into n
• 30. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously (ii ) substitute point of intersection into n (iii ) if it satisfies the equation, then the lines are concurrent
• 31. (ii) Find the equation of the line passing through (6,4) and is perpendicular to 9x – 4y + 6 =0 OR 4x  9 y  k  0 4 9 y  x 6 y  4    x  6  6, 4  : 4  6   9  4   k  0 9 4 4 9 y  36  4 x  24 60  k  0 4 k  60 required m   4 x  9 y  60  0 9  4 x  9 y  60  0 To prove three lines (l, m, n) are concurrent; (i ) solve l and m simultaneously (ii ) substitute point of intersection into n (iii ) if it satisfies the equation, then the lines are concurrent Exercise 5D; 1e, 2c, 4abc (i), 5b, 7d, 9, 11, 13, 15, 17ab (i), 18ab (ii), 19, 22, 23c, 26*