11X1 T03 06 asymptotes (2011)

562 views
481 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
562
On SlideShare
0
From Embeds
0
Number of Embeds
130
Actions
Shares
0
Downloads
9
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

11X1 T03 06 asymptotes (2011)

  1. 1. Asymptotes
  2. 2. AsymptotesCurves always bend towards the asymptotes
  3. 3. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptote
  4. 4. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x  
  5. 5. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x 
  6. 6. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x  solve A(x) = 0 to find vertical asymptotes
  7. 7. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
  8. 8. AsymptotesCurves always bend towards the asymptotesCurves never cross a vertical asymptoteCurves approach horizontal and oblique asymptotes as x   solve R(x) = 0 to find where (if anywhere) the curve cuts the horizontal/oblique asymptote P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
  9. 9. e.g.  i  y   x  3 x  2   x  1 x  1
  10. 10. e.g.  i  y   x  3 x  2   x  1 x  1 x2 1 x2  x  6
  11. 11. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1
  12. 12. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1 x 5
  13. 13. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 x2 1 x 5 x5 y  1  x  1 x  1
  14. 14. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 2 x
  15. 15. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 2 x y intercept: (0,6)
  16. 16. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 x intercepts: (–3,0) , (2,0) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1
  17. 17. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1
  18. 18. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  19. 19. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  20. 20. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  21. 21. e.g.  i  y   x  3 x  2   x  1 x  1 1 x2 1 x2  x  6 y x2 1 6 x 5 x5 y  1  x  1 x  1 1 x intercepts: (–3,0) , (2,0) (5,1) –3 –1 1 2 x y intercept: (0,6) vertical asymptotes: x  1 horizontal asymptote: y  1 cuts horizontal asymptote at x  5
  22. 22. e.g.  i  y   x  2  x  1 x  1  x  2  x  3
  23. 23. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 2  x  6 x3  2 x 2  x  2
  24. 24. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x
  25. 25. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5x  2
  26. 26. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6
  27. 27. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4
  28. 28. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3
  29. 29. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –1 1 2 x
  30. 30. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –1 1 1 2 x  y intercept:  0,   1   3  3
  31. 31. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3
  32. 32. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1
  33. 33. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  34. 34. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  35. 35. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  36. 36. e.g.  i  y   x  2  x  1 x  1  x  2  x  3 x 1 x 2  x  6 x3  2 x 2  x  2 y x3  x 2  6 x y  x 1  x2  5 x  2 2 x  x  6 4x  4 4x  4 y  x 1  x  2  x  3 x intercepts: (–1,0), (1,0), (2,0) –2 –1 1 1 2 3 x  y intercept:  0,   1   3  3vertical asymptotes: x  2,3oblique asymptote: y  x  1 cuts horizontal asymptote at x  1
  37. 37. Exercise 3G; 3, 6, 8ac, 16cf, 17a

×