Like this presentation? Why not share!

11X1 T01 09 completing the square (2011)

on Feb 08, 2011

• 558 views

Views

Total Views
558
Views on SlideShare
452
Embed Views
106

Likes
0
6
0

1 Embed106

 http://virtualb15.edublogs.org 106

Report content

• Comment goes here.
Are you sure you want to

11X1 T01 09 completing the square (2011)Presentation Transcript

• Completing the Square
• Completing the Squaree.g. (i ) x 2  6 x  7  0
• Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant
• Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared
• Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared x 2  6 x  9  16  x  3  16 2 factorise to a perfect square
• Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared x 2  6 x  9  16  x  3  16 2 factorise to a perfect square x  3  4
• Completing the Squaree.g. (i ) x 2  6 x  7  0 x2  6x  7 move the constant x 2  6 x  32  7  32 add half the coefficient of ‘x’ squared x 2  6 x  9  16  x  3  16 2 factorise to a perfect square x  3  4 x  3  4 x  7 or x  1
• (ii ) ax 2  bx  c  0
• (ii ) ax 2  bx  c  0 b c x2  x   0 a a
• (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a
• (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a 
• (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a  2 x b  c  b 2    2a  a 4a 2 b 2  4ac  4a 2
• (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a  2 x b  c  b 2    2a  a 4a 2 b 2  4ac  4a 2 b b 2  4ac x  2a 2a
• (ii ) ax 2  bx  c  0 b c x2  x   0 a a b c x  x 2 a a 2 2x2  x         b b c b     a  2a  a  2a  2 x b  c  b 2    2a  a 4a 2 b 2  4ac  4a 2 b b 2  4ac x  2a 2a b  b 2  4ac x 2a
• (iii ) x 2  6 x  6  0
• (iii ) x 2  6 x  6  0  x  3 0 2
• (iii ) x 2  6 x  6  0  x  3 3  0 2
• (iii ) x 2  6 x  6  0  x  3 3  0 2 x  3  3  x  3  3   0
• (iii ) x 2  6 x  6  0  x  3 3  0 2 x  3  3  x  3  3   0x  3  3 or x  3  3
• (iii ) x 2  6 x  6  0  x  3 3  0 2 x  3  3  x  3  3   0x  3  3 or x  3  3 Exercise 1I; 1adh, 2ch, 3adg, 4bdfh, 5bdf, 6adg, 7bc, 8*