Your SlideShare is downloading. ×
  • Like
11 x1 t16 02 definite integral (2013)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

11 x1 t16 02 definite integral (2013)

  • 288 views
Published

 

Published in Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
288
On SlideShare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
18
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Properties Of Definite Integral
  • 2. Properties Of Definite Integral 1 a b n 1 b x  x dx   n  1 a   n
  • 3. Properties Of Definite Integral 1 a b n 1 b x  x dx   n  1 a   n 2 a kf  x dx k a f  x dx b b can only factorise constants 
  • 4. Properties Of Definite Integral 1 a b n 1 b x  x dx   n  1 a   n 2 a kf  x dx k a f  x dx b b can only factorise constants  3 a  f  x   g  x dx  a f  x dx  a g  x dx b b b
  • 5. Properties Of Definite Integral 1 a b n 1 b x  x dx   n  1 a   n can only factorise constants  2 a kf  x dx k a f  x dx b b 3 a  f  x   g  x dx  a f  x dx  a g  x dx b b b 4 a f  x dx  a f  x dx  c f  x dx b c b
  • 6. 5 a x n dx  0 b
  • 7. 5 a x n dx  0 b , if f  x   0 for a  x  b
  • 8. 5 a x n dx  0 b 0 , if f  x   0 for a  x  b , if f  x   0 for a  x  b
  • 9. 5 a x n dx  0 b , if f  x   0 for a  x  b , if f  x   0 for a  x  b 0 6 a f  x dx  a g  x dx b b
  • 10. 5 a x n dx  0 b , if f  x   0 for a  x  b , if f  x   0 for a  x  b 0 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b
  • 11. 5 a x n dx  0 b , if f  x   0 for a  x  b , if f  x   0 for a  x  b 0 6 a f  x dx  a g  x dx b b 7 a f  x dx   b f  x dx b a , if f  x   g  x  for a  x  b
  • 12. 5 a x n dx  0 b , if f  x   0 for a  x  b , if f  x   0 for a  x  b 0 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b 7 a f  x dx   b f  x dx b a 8  f  x   0 , a a if f  x  is odd
  • 13. 5 a x n dx  0 b , if f  x   0 for a  x  b , if f  x   0 for a  x  b 0 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b 7 a f  x dx   b f  x dx b a a 8  f  x   0 , a a a a 0 if f  x  is odd 9  f  x   2 f  x  , if f  x  is even
  • 14. 5 a x n dx  0 b , if f  x   0 for a  x  b , if f  x   0 for a  x  b 0 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b 7 a f  x dx   b f  x dx b a a 8  f  x   0 , a a a a 0 if f  x  is odd 9  f  x   2 f  x  , if f  x  is even NOTE : odd  odd  even odd  even  odd even  even  even
  • 15. 2 e.g. (i)  6 x 2 dx 1
  • 16. 2 e.g. (i)  6 x 2 dx 1 2 1 x 3   6  3 1 
  • 17. 2 e.g. (i)  6 x 2 dx 1 2 1 x 3   6  3 1   223  13   14
  • 18. 2 e.g. (i)  6 x 2 dx 1 5 ii   3 xdx 0 2 1 x 3   6  3 1   223  13   14
  • 19. 2 e.g. (i)  6 x 2 dx 1 2 1 x 3   6  3 1   223  13   14 5 5 0 0 1 3 ii   3 xdx   x dx
  • 20. 2 e.g. (i)  6 x 2 dx 1 2 1 x 3   6  3 1   223  13   14 5 5 0 0 1 3 ii   3 xdx   x dx 5 3   x  4  0 4 3
  • 21. 2 e.g. (i)  6 x 2 dx 1 2 1 x 3   6  3 1   223  13   14 5 5 0 0 1 3 ii   3 xdx   x dx 5 3   x  4  0 3 3 5  x x 0 4 4 3
  • 22. 2 e.g. (i)  6 x 2 dx 1 2 1 x 3   6  3 1   223  13   14 5 5 0 0 1 3 ii   3 xdx   x dx 5 3   x  4  0 3 3 5  x x 0 4 3 3  5 5  0  4 153 5  4 4 3
  • 23. 2 iii   sin 5 xdx 2
  • 24. 2 iii   sin 5 xdx  0 2 odd function 5  odd function
  • 25. 2 iii   sin 5 xdx  0 2 1 iv  x 3  2 x 2  x  1dx 1 odd function 5  odd function
  • 26. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 1 0 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx
  • 27. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 1 0 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx 1  2 x3  x  2 0 3 
  • 28. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 1 0 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx 1  2 x3  x  2 0 3   2 1 3  1  0  2    3  10  3
  • 29. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 1 0 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx 1  2 x3  x  2 0 3   2 1 3  1  0  2    3  10  3 Exercise 11C; 1bce, 2adf, 3ab (i, iii), 4bcf, 5, 6ac, 7df, 8b, 12b, 13*