11 x1 t15 02 sketching polynomials (2013)
Upcoming SlideShare
Loading in...5
×
 

11 x1 t15 02 sketching polynomials (2013)

on

  • 532 views

 

Statistics

Views

Total Views
532
Views on SlideShare
227
Embed Views
305

Actions

Likes
0
Downloads
12
Comments
1

1 Embed 305

http://virtualb15.edublogs.org 305

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • Thanks for sharing. Appreciate your clear explanation.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

11 x1 t15 02 sketching polynomials (2013) 11 x1 t15 02 sketching polynomials (2013) Presentation Transcript

  • Sketching Polynomials When drawing y = P(x) • y intercept is the constant
  • e.g. y   x  1 x  1  x  2  3 2  y     x             
  • Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots
  • e.g. y   x  1 x  1  x  2  3 2  y     x             
  • Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term
  • e.g. y   x  1 x  1  x  2  3 2  y     x             
  • e.g. y   x  1 x  1  x  2  3 2  graph starts here y     x             
  • e.g. y   x  1 x  1  x  2  3 2  graph starts here y graph finishes here     x             
  • Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term • even powered roots look like or
  • e.g. y   x  1 x  1  x  2  3 2  graph starts here y graph finishes here     x             
  • Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term • even powered roots look like or • odd powered roots look like or
  • e.g. y   x  1 x  1  x  2  3 2  graph starts here y graph finishes here     x             
  • e.g. y   x  1 x  1  x  2  3 2  y     x             
  • Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term • even powered roots look like or • odd powered roots look like or • If the polynomial can be written as  x  a  , then it is a basic curve n
  • e.g. y   x  1  x  1  x  2   x  2  4 3 2
  • e.g. y   x  1  x  1  x  2   x  2  4 3 2 y  x        
  • Exercise 4B; 3cei, 4deghi, 6acm 7ac, 8, 11