Upcoming SlideShare
×

# 11 x1 t15 02 sketching polynomials (2013)

932 views

Published on

Published in: Education, Technology
1 Comment
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Thanks for sharing. Appreciate your clear explanation.

Are you sure you want to  Yes  No
• Be the first to like this

Views
Total views
932
On SlideShare
0
From Embeds
0
Number of Embeds
342
Actions
Shares
0
38
1
Likes
0
Embeds 0
No embeds

No notes for slide

### 11 x1 t15 02 sketching polynomials (2013)

1. 1. Sketching Polynomials When drawing y = P(x) • y intercept is the constant
2. 2. e.g. y   x  1 x  1  x  2  3 2  y     x             
3. 3. Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots
4. 4. e.g. y   x  1 x  1  x  2  3 2  y     x             
5. 5. Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term
6. 6. e.g. y   x  1 x  1  x  2  3 2  y     x             
7. 7. e.g. y   x  1 x  1  x  2  3 2  graph starts here y     x             
8. 8. e.g. y   x  1 x  1  x  2  3 2  graph starts here y graph finishes here     x             
9. 9. Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term • even powered roots look like or
10. 10. e.g. y   x  1 x  1  x  2  3 2  graph starts here y graph finishes here     x             
11. 11. Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term • even powered roots look like or • odd powered roots look like or
12. 12. e.g. y   x  1 x  1  x  2  3 2  graph starts here y graph finishes here     x             
13. 13. e.g. y   x  1 x  1  x  2  3 2  y     x             
14. 14. Sketching Polynomials When drawing y = P(x) • y intercept is the constant • x intercepts are the roots • as x   , P(x) acts like the leading term • even powered roots look like or • odd powered roots look like or • If the polynomial can be written as  x  a  , then it is a basic curve n
15. 15. e.g. y   x  1  x  1  x  2   x  2  4 3 2
16. 16. e.g. y   x  1  x  1  x  2   x  2  4 3 2 y  x        
17. 17. Exercise 4B; 3cei, 4deghi, 6acm 7ac, 8, 11