Your SlideShare is downloading. ×
11 x1 t11 03 parametric coordinates (2012)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

11 x1 t11 03 parametric coordinates (2012)

991
views

Published on

Published in: Education, Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
991
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
13
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Parametric Coordinates
  • 2. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.
  • 3. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter).
  • 4. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x
  • 5. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x
  • 6. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay x
  • 7. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x
  • 8. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 x
  • 9. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates x
  • 10. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) x
  • 11. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) Cartesian coordinates x
  • 12. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) Cartesian coordinates t 1 x
  • 13. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) Cartesian coordinates t 1 parameter x
  • 14. Parametric CoordinatesCartesian Coordinates: curve is described by one equation and points are described by two numbers.Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation (4a, 4a) x  2at , y  at 2 Parametric coordinates t  2 (2a, a) Cartesian coordinates t 1 parameter x
  • 15. Any point on the parabola x 2  4ay has coordinates;
  • 16. Any point on the parabola x 2  4ay has coordinates; x  2at
  • 17. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2
  • 18. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length
  • 19. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number
  • 20. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real numbere.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4
  • 21. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real numbere.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 t  2x
  • 22. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real numbere.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4
  • 23. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real numbere.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2
  • 24. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2(ii) State the coordinates of the focus
  • 25. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2(ii) State the coordinates of the focus 1 a 4
  • 26. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2(ii) State the coordinates of the focus  1 a 1  focus   0,  4  4
  • 27. (iii) Calculate the parametric coordinates of the curve y  8 x 2
  • 28. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay
  • 29. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay 1 4a  8 1 a 32
  • 30. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay 1 4a  8 1 a 32 1 1   the parametric coordinates are  t , t 2   16 32 
  • 31. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay 1 4a  8 1 a 32 1 1   the parametric coordinates are  t , t 2   16 32  Exercise 9D; 1, 2 (not latus rectum), 3, 5, 7a