Upcoming SlideShare
×

Like this presentation? Why not share!

# 11 x1 t10 03 equations reducible to quadratics (2013)

## on Jun 24, 2013

• 444 views

### Views

Total Views
444
Views on SlideShare
225
Embed Views
219

Likes
0
6
0

### 1 Embed219

 http://virtualb15.edublogs.org 219

### Report content

• Comment goes here.
Are you sure you want to
Your message goes here

## 11 x1 t10 03 equations reducible to quadratics (2013)Presentation Transcript

• Equations Reducible To Quadratics
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm 
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 1x 
• Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 1x  or 0x 
• Exercise 8D; 1, 2ad, 3b, 4ab, 5ac, 6a, 8abi, 9a*