11 x1 t10 03 equations reducible to quadratics (2013)
Upcoming SlideShare
Loading in...5
×
 

11 x1 t10 03 equations reducible to quadratics (2013)

on

  • 444 views

 

Statistics

Views

Total Views
444
Views on SlideShare
225
Embed Views
219

Actions

Likes
0
Downloads
6
Comments
0

1 Embed 219

http://virtualb15.edublogs.org 219

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    11 x1 t10 03 equations reducible to quadratics (2013) 11 x1 t10 03 equations reducible to quadratics (2013) Presentation Transcript

    • Equations Reducible To Quadratics
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm 
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 1x 
    • Equations Reducible To Quadratics4 2e.g. ( ) 4 12 0i x x  2let m x2 4m x24 12 0m m    6 2 0m m  6 or 2m m  2 26 or 2x x  6x   no real solutions6x   ( ) 9 4 3 3 0x xii   let 3xm    22 2 23 3 3 9xx x xm    24 3 0m m    3 1 0m m  3 or 1m m 3 3 or 3 1x x 1x  or 0x 
    • Exercise 8D; 1, 2ad, 3b, 4ab, 5ac, 6a, 8abi, 9a*