Upcoming SlideShare
×

# 11 x1 t10 02 quadratics and other methods (2013)

417
-1

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
417
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
12
0
Likes
0
Embeds 0
No embeds

No notes for slide

### 11 x1 t10 02 quadratics and other methods (2013)

1. 1. Quadratics and Completing theSquare
2. 2. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  
3. 3. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x  
4. 4. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x  
5. 5. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  
6. 6. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts
7. 7. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x   
8. 8. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  
9. 9. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  4 24 2xx    
10. 10. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x   4 24 2xx    
11. 11. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x      intercepts are6,0 and 2,0x 4 24 2xx    
12. 12. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x      intercepts are6,0 and 2,0x 4 24 2xx    (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)
13. 13. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x      intercepts are6,0 and 2,0x 4 24 2xx    (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  25 3y k x  
14. 14. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x      intercepts are6,0 and 2,0x 4 24 2xx    (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  25 3y k x      22,0 : 0 2 5 3k  
15. 15. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x      intercepts are6,0 and 2,0x 4 24 2xx    (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  25 3y k x      22,0 : 0 2 5 3k  9 313kk  
16. 16. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x      intercepts are6,0 and 2,0x 4 24 2xx    (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  25 3y k x      22,0 : 0 2 5 3k  9 313kk    215 33y x   
17. 17. Quadratics and Completing theSquaree.g. 2Sketch the parabola 8 12y x x  28 12y x x   24 4x   vertex is 4, 4  x intercepts  24 4 0x    24 4x  6 or 2x x      intercepts are6,0 and 2,0x 4 24 2xx    (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  25 3y k x      22,0 : 0 2 5 3k  9 313kk    215 33y x    2110 163y x x   
18. 18. Quadratics and the Discriminant
19. 19. Quadratics and the Discriminant24b ac  
20. 20. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     
21. 21. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  
22. 22. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 
23. 23. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 0, one interceptx 
24. 24. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 0, one interceptx 0, two interceptsx 
25. 25. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 0, one interceptx 0, two interceptsx 2e.g. Sketch the parabola 8 12y x x  
26. 26. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 0, one interceptx 0, two interceptsx   28 4 1 1216  2e.g. Sketch the parabola 8 12y x x  
27. 27. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 0, one interceptx 0, two interceptsx   28 4 1 1216  2e.g. Sketch the parabola 8 12y x x  8 16vertex ,2 4      
28. 28. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 0, one interceptx 0, two interceptsx   28 4 1 1216  2e.g. Sketch the parabola 8 12y x x  8 16vertex ,2 4       4, 4  
29. 29. Quadratics and the Discriminant24b ac  vertex ,2 4ba a     zeroes2ba  Note: if 0, no interceptsx 0, one interceptx 0, two interceptsx   28 4 1 1216  2e.g. Sketch the parabola 8 12y x x  8 16vertex ,2 4       4, 4  Exercise 8B; 1cfi, 2bd, 3c, 4b, 6bei, 10b,11d, 16, 17, 20*Exercise 8C; 1adg, 2adg, 3ad, 5ac, 8ac,10, 13*
1. #### A particular slide catching your eye?

Clipping is a handy way to collect important slides you want to go back to later.