11 x1 t10 02 quadratics and other methods (2012)
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

11 x1 t10 02 quadratics and other methods (2012)

on

  • 570 views

 

Statistics

Views

Total Views
570
Views on SlideShare
247
Embed Views
323

Actions

Likes
0
Downloads
10
Comments
0

1 Embed 323

http://virtualb15.edublogs.org 323

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

11 x1 t10 02 quadratics and other methods (2012) Presentation Transcript

  • 1. Quadratics and Completing the Square
  • 2. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12
  • 3. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12
  • 4. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2
  • 5. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2  vertex is  4, 4 
  • 6. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
  • 7. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
  • 8. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4 
  • 9. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2
  • 10. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2
  • 11. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 
  • 12. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)
  • 13. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2
  • 14. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2 2,0  : 0  k  2  5   3 2
  • 15. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2 9k  3 2,0  : 0  k  2  5   3 1 k  2 3
  • 16. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2    2,0  : 0  k  2  5  3 2 k  1 3
  • 17. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2    2,0  : 0  k  2  5  3 2 k  1 3 y    x  10 x  16  1 2 3
  • 18. Quadratics and the Discriminant
  • 19. Quadratics and the Discriminant   b 2  4ac
  • 20. Quadratics and the Discriminant   b 2  4ac  b ,  vertex     2a 4a 
  • 21. Quadratics and the Discriminant   b 2  4ac  b ,  vertex     2a 4a  b  zeroes  2a
  • 22. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a  b  zeroes  2a
  • 23. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b  zeroes  2a
  • 24. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x interceptszeroes  2a
  • 25. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2ae.g. Sketch the parabola y  x 2  8 x  12
  • 26. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2ae.g. Sketch the parabola y  x 2  8 x  12  82  4 112   16
  • 27. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16  vertex     2 4
  • 28. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16  vertex     2 4   4, 4 
  • 29. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16 Exercise 8B; 1cfi, 2bd, 3c, 4b, 6bei, 10b,   8 ,  16  11d, 16, 17, 20* vertex     2 4 Exercise 8C; 1adg, 2adg, 3ad, 5ac, 8ac,   4, 4  10, 13*