0
Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# 11 x1 t10 02 quadratics and other methods (2012)

495

Published on

Published in: Education, Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
495
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
10
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. Quadratics and Completing the Square
• 2. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12
• 3. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12
• 4. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2
• 5. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12   x  4  4 2  vertex is  4, 4 
• 6. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
• 7. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts   x  4  4 2  vertex is  4, 4 
• 8. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4 
• 9. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2
• 10. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2
• 11. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 
• 12. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)
• 13. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2
• 14. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2 2,0  : 0  k  2  5   3 2
• 15. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0  (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)   y  k  x  5  3 2 9k  3 2,0  : 0  k  2  5   3 1 k  2 3
• 16. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2    2,0  : 0  k  2  5  3 2 k  1 3
• 17. Quadratics and Completing the Squaree.g. Sketch the parabola y  x 2  8 x  12  x  4  4  0 2 y  x 2  8 x  12 x intercepts  x  4  4 2   x  4  4 2  vertex is  4, 4  x  4  2 x  4  2 x  6 or x  2  x intercepts are  6,0  and  2,0 (ii) Write down the quadratic with roots 2 and 8 and vertex (5,3)  2  y  k  x  5  3 9k  3 1  y    x  5  3 3 2    2,0  : 0  k  2  5  3 2 k  1 3 y    x  10 x  16  1 2 3
• 18. Quadratics and the Discriminant
• 19. Quadratics and the Discriminant   b 2  4ac
• 20. Quadratics and the Discriminant   b 2  4ac  b ,  vertex     2a 4a 
• 21. Quadratics and the Discriminant   b 2  4ac  b ,  vertex     2a 4a  b  zeroes  2a
• 22. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a  b  zeroes  2a
• 23. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b  zeroes  2a
• 24. Quadratics and the Discriminant   b 2  4ac  b ,  vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x interceptszeroes  2a
• 25. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2ae.g. Sketch the parabola y  x 2  8 x  12
• 26. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2ae.g. Sketch the parabola y  x 2  8 x  12  82  4 112   16
• 27. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16  vertex     2 4
• 28. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16   8 ,  16  vertex     2 4   4, 4 
• 29. Quadratics and the Discriminant   b 2  4ac  b ,   vertex   Note: if   0, no x intercepts   2a 4a    0, one x intercept b     0, two x intercepts zeroes  2a e.g. Sketch the parabola y  x 2  8 x  12   82  4 112   16 Exercise 8B; 1cfi, 2bd, 3c, 4b, 6bei, 10b,   8 ,  16  11d, 16, 17, 20* vertex     2 4 Exercise 8C; 1adg, 2adg, 3ad, 5ac, 8ac,   4, 4  10, 13*