11 x1 t04 05 sine rule (2013)
Upcoming SlideShare
Loading in...5
×
 

11 x1 t04 05 sine rule (2013)

on

  • 438 views

 

Statistics

Views

Total Views
438
Views on SlideShare
260
Embed Views
178

Actions

Likes
0
Downloads
13
Comments
0

1 Embed 178

http://virtualb15.edublogs.org 178

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

11 x1 t04 05 sine rule (2013) 11 x1 t04 05 sine rule (2013) Presentation Transcript

  • Sine Rule A c bB a C
  • Sine Rule A c b hB a C
  • Sine Rule A h  sin B c c h  c sin B h bB a C
  • Sine Rule A h h  sin B  sin C c b c h  c sin B h  b sin C h bB a C
  • Sine Rule A h h  sin B  sin C c b c h  c sin B h  b sin C h b  c sin B  b sin CB C c b a  sin C sin B
  • Sine Rule A h h  sin B  sin C c b c h  c sin B h  b sin C h b  c sin B  b sin CB C c b a  sin C sin B In any ABC a b c   sin A sin B sin C
  • e.g.  i  H 57 46 37.2 Q 43 26  h L
  • e.g.  i  H h q  sin H sin Q 57 46 h 37.2  37.2 sin 57 46 sin 43 26  Q 43 26  h L
  • e.g.  i  H h q  sin H sin Q 57 46 h 37.2  37.2 sin 57 46 sin 43 26  Q 43 26  37.2sin 57 46 h h sin 43 26 L h  45.8 units (to 1 dp)
  • e.g.  i  H h q  sin H sin Q 57 46 h 37.2  37.2 sin 57 46 sin 43 26  Q 43 26  37.2sin 57 46 h h sin 43 26 L h  45.8 units (to 1 dp)(ii ) F 16.21 12.36Y 10632 Z
  • e.g.  i  H h q  sin H sin Q 57 46 h 37.2  37.2 sin 57 46 sin 43 26  Q 43 26  37.2sin 57 46 h h sin 43 26 L h  45.8 units (to 1 dp)(ii ) sin Y sin Z  F y z 16.21 sin Y sin10632  12.36 12.36 16.21Y 10632 Z
  • e.g.  i  H h q  sin H sin Q 57 46 h 37.2  37.2 sin 57 46 sin 43 26  Q 43 26  37.2sin 57 46 h h sin 43 26 L h  45.8 units (to 1 dp)(ii ) sin Y sin Z  F y z 16.21 sin Y sin10632  12.36 12.36 16.21Y 12.36sin10632 10632 sin Y  16.21 Z Y  4658
  • Note: does your answer make sense?
  • Note: does your answer make sense? Check whether your answer might be obtuse, remember;
  • Note: does your answer make sense? Check whether your answer might be obtuse, remember;  angle sum  = 180
  • Note: does your answer make sense? Check whether your answer might be obtuse, remember;  angle sum  = 180  largest angle is opposite the largest side
  • Note: does your answer make sense? Check whether your answer might be obtuse, remember;  angle sum  = 180  largest angle is opposite the largest side A B C
  • Note: does your answer make sense? Check whether your answer might be obtuse, remember;  angle sum  = 180  largest angle is opposite the largest side A B d Ccircumcircle
  • Note: does your answer make sense? Check whether your answer might be obtuse, remember;  angle sum  = 180  largest angle is opposite the largest side A B d C a b c    diameter sin A sin B sin Ccircumcircle
  • Area of a Triangle A c bB a C
  • Area of a Triangle A c b hB a C
  • Area of a Triangle A 1 Area  ah 2 c b hB a C
  • Area of a Triangle A h 1  sin C Area  ah b 2 c b h  b sin C hB a C
  • Area of a Triangle A h 1  sin C Area  ah b 2 1 h  b sin C c h b  Area  ab sin C 2B a C
  • Area of a Triangle A h 1  sin C Area  ah b 2 1 h  b sin C c h b  Area  ab sin C 2B C In any ABC a 1 Area  ab sin C 2 1  bc sin A 2 1  ac sin B 2
  • Area of a Triangle A h 1  sin C Area  ah b 2 1 h  b sin C c h b  Area  ab sin C 2 B C In any ABC ae.g. M 1 Area  ab sin C 9.21 2 1 F 60 15   bc sin A 2 6.37 1 D  ac sin B 2
  • Area of a Triangle A h 1  sin C Area  ah b 2 1 h  b sin C c h b  Area  ab sin C 2 B C In any ABC ae.g. M 1 1 Area  ab sin C 9.21 Area  dm sin F 2 2 1 1 F 60 15    9.21 6.37  sin 6015  bc sin A 2 2 6.37 1 D  ac sin B 2
  • Area of a Triangle A h 1  sin C Area  ah b 2 1 h  b sin C c h b  Area  ab sin C 2 B C In any ABC ae.g. M 1 1 Area  ab sin C 9.21 Area  dm sin F 2 2 1 1 F 60 15    9.21 6.37  sin 6015  bc sin A 2 2 6.37  25.47 units 2 (to 2 dp) 1 D  ac sin B 2
  • Area of a Triangle A h 1  sin C Area  ah b 2 1 h  b sin C c h b  Area  ab sin C 2 B C In any ABC ae.g. M 1 1 Area  ab sin C 9.21 Area  dm sin F 2 2 1 1 F 60 15    9.21 6.37  sin 6015  bc sin A 2 2 6.37  25.47 units 2 (to 2 dp) 1 D  ac sin B 2 Exercise 4H; 1a, 2b, 3a, 4, 8, 9, 10, 12, 14, 16, 18, 20, 22*