Your SlideShare is downloading. ×
0
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
11 x1 t02 05 surdic equalities (2013)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

11 x1 t02 05 surdic equalities (2013)

341

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
341
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Surdic Equalities
  • 2. Surdic Equalities If a  b x  A  B x
  • 3. Surdic Equalities If a  b x  A  B x then a  A , b  B
  • 4. Surdic Equalities If a  b x  A  B x then a  A , b  B If x  y  X  Y
  • 5. Surdic Equalities If a  b x  A  B x then a  A , b  B If x  y  X  Y then x  X , y  Y
  • 6. Surdic Equalities If a  b x  A  B x then a  A , b  B If x  y  X  Y then x  X , y  Y   2e.g. x  y  2  5
  • 7. Surdic Equalities If a  b x  A  B x then a  A , b  B If x  y  X  Y then x  X , y  Y   2e.g. x  y  2  5  44 55 94 5
  • 8. Surdic Equalities If a  b x  A  B x then a  A , b  B If x  y  X  Y then x  X , y  Y   2e.g. x  y  2  5  44 55 94 5  9  80
  • 9. Surdic Equalities If a  b x  A  B x then a  A , b  B If x  y  X  Y then x  X , y  Y   2e.g. x  y  2  5  44 55 94 5  9  80  x  9, y  80
  • 10. Exercise 2E; 1ace, 2bde, 3bdf, 4ad, 5ace, 6adg, 7ac, 8*a

×