11 x1 t01 02 binomial products (2014)

1,260 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,260
On SlideShare
0
From Embeds
0
Number of Embeds
138
Actions
Shares
0
Downloads
17
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

11 x1 t01 02 binomial products (2014)

  1. 1. Binomial Products
  2. 2. Binomial Products Bi  2 nomial  terms
  3. 3. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1 
  4. 4. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1  x 2
  5. 5. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1  x 2  x
  6. 6. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1  x 2  x  6 x
  7. 7. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1  x 2  x  6 x  6  x2  7 x  6
  8. 8. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1  x 2  x  6 x  6  x2  7 x  6 2  a  b   a 2  2ab  b 2
  9. 9. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1  x 2  x  6 x  6  x2  7 x  6  a  b   a 2  2ab  b 2 2  a  b   a 2  2ab  b 2 2
  10. 10. Binomial Products Bi  2 nomial  terms e.g.  x  6  x  1  x 2  x  6 x  6  x2  7 x  6  a  b   a 2  2ab  b 2 2  a  b   a 2  2ab  b 2 2  a  b  a  b   a 2  b 2
  11. 11. e.g. (i )  x  2   2
  12. 12. e.g. (i )  x  2   x 2  2  x  2   22 2
  13. 13. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2
  14. 14. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4
  15. 15. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   2
  16. 16. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2
  17. 17. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2 (iii )  2 p  5  2 p  5  
  18. 18. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2 (iii )  2 p  5  2 p  5   4 p 2  25
  19. 19. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2 (iii )  2 p  5  2 p  5   4 p 2  25 (iv)  a  2   a 2  3a  7  
  20. 20. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2 (iii )  2 p  5  2 p  5   4 p 2  25 2 terms  3 terms (iv)  a  2   a 2  3a  7    answer has 6 terms
  21. 21. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2 (iii )  2 p  5  2 p  5   4 p 2  25 2 terms  3 terms  answer has 6 terms (iv)  a  2   a 2  3a  7   a 3 3a 2 7a 2a 2 6a 14
  22. 22. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2 (iii )  2 p  5  2 p  5   4 p 2  25 2 terms  3 terms  answer has 6 terms (iv)  a  2   a 2  3a  7   a 3 3a 2 7a 2a 2 6a 14  a 3  a 2  a  14
  23. 23. a  b 2 a2 2ab b 2 e.g. (i )  x  2   x 2  2  x  2   22 2  x2  4x  4 (ii )  3 x  4   9 x 2  24 x  16 2 (iii )  2 p  5  2 p  5   4 p 2  25 2 terms  3 terms  answer has 6 terms (iv)  a  2   a 2  3a  7   a 3 3a 2 7a 2a 2 6a 14  a 3  a 2  a  14 Exercise 1B; 1ch, 2c, 3be, 5ceg, 7ac, 8b, 9b, 10, 11ace, 13bd, 15*

×