Your SlideShare is downloading. ×
0
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

IAP09 CUDA@MIT 6.963 - Lecture 01: Logistics (Nicolas Pinto, MIT)

3,211

Published on

See http://sites.google.com/site/cudaiap2009 and http://pinto.scripts.mit.edu/Classes/CUDAIAP2009

See http://sites.google.com/site/cudaiap2009 and http://pinto.scripts.mit.edu/Classes/CUDAIAP2009

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
3,211
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
125
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 6.963 IT / A@M CUD 9 IAP0 Supercomputing on your desktop: Programming the next generation of cheap and massively parallel hardware using CUDA Lecture 01 Nicolas Pinto (MIT) Kick - Off session
  • 2. Solve Tomorrow’s Problems, Today!
  • 3. Need More Throughput?
  • 4. Still doing your computations the old way?
  • 5. Tired Of Waiting For Your Computations?
  • 6. HPC has changed. Did You?
  • 7. Fresh New Technology Available NOW! 09) IAP ( 63 6.9
  • 8. Guaranteed
  • 9. Course Goals • Learn how to program massively parallel processors and achieve –high performance –functionality and maintainability –scalability across future generations • Acquire technical knowledge required to achieve the above goals –principles and patterns of parallel programming –processor architecture features and constraints –programming API, tools and techniques 6.963 d for apte © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ad ECE 498AL1, University of Illinois, Urbana-Champaign
  • 10. Today yey!!
  • 11. Class logistics Teaching Staff (MIT)
  • 12. Class logistics Teaching Staff (MIT) GPU Computing with CUDA David Luebke (NVIDIA) CUDA Demos Marc Adams (NVIDIA)
  • 13. Class logistics Teaching Staff (MIT) GPU Computing with CUDA David Luebke (NVIDIA) CUDA Demos Marc Adams (NVIDIA) High-Throughput Scientific Computing Hanspeter Pfister (Harvard)
  • 14. Some Logistics...
  • 15. af f St ing ach Te Faculty: Prof. Steven G. Johnson
  • 16. af f St ing ach Te TAs: Justin Riley and Nicolas Poilvert
  • 17. af f St ing ach Te Instructor: Nicolas Pinto Contact: pinto@mit.edu
  • 18. ule ed ch S Lectures: M/W/F 10-12 (#32-155) HandsOn: M/W/F 2-5 (#32-141) Project Hours: T/R 2-5 (#3-370)
  • 19. ule ed ch S / CUDA Basics / / CUDA Advanced / / Theory / / Case Studies / / Projects /
  • 20. ces ur eso R
  • 21. ces ur eso R
  • 22. are rdw Ha 30+ GPUs
  • 23. are rdw Ha 19 MacBook Pro
  • 24. are rdw Ha $70,000+ from NVIDIA, Rowland/Harvard and MIT (OEIT, DiCarlo Lab, Graphics CSAIL, EECS)
  • 25. The “Project”
  • 26. (s) ect oj Pr he T
  • 27. ct oje Pr he T
  • 28. ect oj Pr he T Project Presentations @the_end_of_the_course MIT 6.963
  • 29. ion tit pe om C
  • 30. onal Pers ifts ter G mpu rco Supe
  • 31. DO TO 1) Discussion Group 2) Team Project 3) Assignments 4) Enjoy! Contact: pinto@mit.edu
  • 32. ME CO

×