• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content

Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this presentation? Why not share!

Vph2012 20 sept12_shublaq_final

on

  • 412 views

Talk entitled "from the Virtual Human to a Digital Me" presented at the Virtual Physiological Human 2012 Conference held at IET Savoy, Savoy Place, London, 18-20 September 2012.

Talk entitled "from the Virtual Human to a Digital Me" presented at the Virtual Physiological Human 2012 Conference held at IET Savoy, Savoy Place, London, 18-20 September 2012.

Statistics

Views

Total Views
412
Views on SlideShare
412
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Vph2012 20 sept12_shublaq_final Vph2012 20 sept12_shublaq_final Presentation Transcript

    • From  the  Virtual  Human  to  a   ‘Digital  Me’   Nour  Shublaq,  Peter  Coveney   Centre  for  Computa-onal  Science   University  College  London,  UK   n.shublaq@ucl.ac.uk   VPH 2012 – Infrastructures: Looking Ahead, Thursday Sept 20, 2012, London
    • Overview  •  What  is  a  ‘Digital  Me’?    •  Ingredients  •  Some  challenges  ahead  and  key  to   implementa-on  •  Conclusions  
    • A  ‘Digital  Me’:  Google  maps  of  the  human  body            ‘a  coherent  digital  representa-on  that  is  used  as  an  integra-ve  framework   for  the  consolida-on  of  fundamental  and  transla-onal  Integra-ve   Biomedical  Research,  and  the  provision  to  (European)  Ci-zens  of  an   affordable  Personalised,  Predic-ve,  and  Integra-ve  Medicine’  •  Interface  to  informaAon  -­‐  having  an  efficient,  effec-ve  and  interac-ve   interface  to  the  combined,  heterogeneous  informa-on  based  on   innova-ve,  interac-ve  visualisa-on  technologies    •  Blender  of  informaAon  -­‐  the  ability  to  combine,  integrate,  fuse  informa-on   in  a  synergis-c  way,  and  to  return  such  fusion  to  the  user  visually.  This   involves  knowledge  management,  data  fusion,  image  processing,  mul--­‐ modal  visualisa-on,  and  visualisa-on  of  uncertainty    •  PaAent  avatar  -­‐  Modelling  of  physiological  and  pathological  processes  and   their  representa-on  in  a  way  that  fosters  understanding,  explora-on  and   possibly  the  produc-on  of  new  knowledge  from  pa-ent-­‐specific  and   popula-on-­‐specific  informa-on  and  knowledge                Digital  Pa)ent  Roadmap    
    • •  What  is  a  ‘Digital  Me’  ?  •  Ingredients  •  Some  challenges  ahead  and  key  to   implementa-on  •  Conclusions  
    • Human  Genome  Sequencing   30,000 3000Sixty years ago we barely understood 10the genetic basis of heredity. Today,next generation sequencing has led to 2fundamental shifts in ourunderstanding of biology.No more than 25,000 protein codinggenes in the human genome and notmore than 100,000 previously thought.Thousands of DNA variants have nowbeen associated with traits/diseases.Physical characteristics and diseaserisk are partly determined by smallgenetic differences Genomic   Mol.  Profiles   Structure  
    • New  Sequencers   1 Human Genome in: 5 years (2001) 2 years (2004) 4 days (Jan 2008) 16 Hours (Oct 2008) 3 Hours (Nov 2009) 6 minutes (Now!)Cost of whole genome sequencing expected to drop to $100 in a few years 6
    • 1 Genotype-­phenotype  resources   Complex  disease   networks  Molecular-­level  models   (GWAS,  PPI,  …)   Disease  gene   Oinding   &  sema ing     ntic   2 in Disease   web   Developments   Text  m susceptibility  System-­level  models   (organ  networks,…)   Phenotypic   variation   Pharmacogenomics   Clinical  phenotypes   (EHR,  multi-­scale   physiological  models…)   Exposome   3 Translational  Systems  Biology   (drugs,  diet,  environmental   chemicals,…)  
    • Use  Case:  Cancer  Treatment     Mutation Database The Cancer Model Drug Database X 8Tumor sampling GenomeTumor stem cell extraction/ and Transcriptomeexpansion sequencing X X Modeling Drug treatment Drug Response recommendation Patient Specific Model
    • Consumer  led  Healthcare  PaAentLikeMe    US-­‐based  social  networking    and  data  sharing  plaZorm  for    people  with  a  range  of  mainly    chronic  and  serious  condi-ons  -­‐  New  security  sengs     23andme     personal  genomics  company     stores  and  analyses  the     genotypes  of  thousands  of     individuals  at  over  500,000     different  posi-ons      
    • MobileTech Special (Qualcomm)
    • Informationweek.com
    • Top  5  Health  Apps       The  Times    Aug  2012   Best  App  for  Exercise   RunKeeper    Fooducate     Sleep  Cycle    Best  App  for  Healthy  Ea-ng   Best  App  for  Snoozing  
    • Lose  It!    Best  App  for  Weight  Loss  ZocDoc  Best  App  for  Finding  a  Doctor  
    • E-­‐infrastructure  and  compuAng  in  the  ‘cloud’   Amazon and Microsoft are providing cloud services for data storage and retrieval
    • •  What  is  a  ‘Digital  Me’  ?  •  Ingredients  •  Some  challenges  ahead  and  key  to   implementa-on  •  Conclusions  
    • Some  challenges  ahead  Biological  challenges   Societal  challenges   –  Do  we  understand  biology  and   –  Privacy   diseases  enough  to  develop   –  How  to  prevent  inequali-es  in   reliable  computa-onal  models?   access  to  health  care?   –  How  to  integrate  growing   –  Health  care  economics   knowledge  into  models?   –  Implementa-on  in  health  care   –  How  to  prevent  adverse  ICT  Challenges   effects/misuse?   –  Data  quality   –  Data  management   –  Data  security   –  User  interfaces  
    • Key  to  ImplementaAon  •  Exploit  unprecedented  amounts  of  detailed  biological  data  being   accumulated  for  individual  people  (e.g.  at  GP  surgeries,  labs),  some  of   which  are  already  available  on  EHRs  •  Harness  the  latest  developments  in  ICT   –  large  scale  data  integra-on  and  mining,  cloud  compu-ng,  high   performance  compu-ng,  advanced  modelling  and  simula-on,     –  all  brought  together  in  a  highly  flexible  plaZorm.    •  Turn  this  informa-on  into  knowledge  that  assists  in  taking  medical,   clinical  and  lifestyle  decisions  for  the  ci-zen  •  Bridge  the  knowledge  gap  in  the  clinical/medical  community    •  Pay  acen-on  to  the  ethical,  legal  and  societal  issues    
    • Clinicians  of  Tomorrow  •  With  the  rush  of  genomic  data  into  hospitals,  and  an  increased   adop-on  of  electronic  health  records,  the  medical/clinical   community  is  faced  with  a  knowledge  gap.    •  Match  the  knowledge  and  training  available  today  for  the  medical   and  clinical  communi-es  with  the  changing  landscape  of  medical   prac-ce  and  personalised  medicine  •  Train  clinicians  today  to  be  comfortable  and  familiar  with  the  use   of  genomic  data  in  managing  their  pa-ents.  For  example,   although  it  might  be  more  useful  for  sequencing  and  genomic   research  to  freeze  tumor  samples,  surgeons  and  pathologists  most   oden  store  -ssue  in  formalin,  which  tends  to  make  meaningful   sequencing  more  difficult.              
    • E-­‐infrastructure  &  ICT  Layers  
    • Ethical,  legal  and  societal  issues   Data  breach  is  the  unauthorised  acquisi-on,  access,  use,  or  disclosure  of   protected  health  informa-on          ownership  of  data,  consent,  compliance,  what  are  the  applicable  laws  and  regula-ons    governing  the  data?  Audi-ng  in  the  cloud?   Autonomy   Well-­‐being   JusAce   Scien-sts   Freedom  to   Facili-es  and   Appropriate   research   funding   reward  e.g.  IP   Pa-ents   Right  to  know  or   Improved   Access  to   not  to  know   treatment  op-ons   resources   Vulnerable  groups   Right  to  be  heard   Allevia-on  of   Equality   disadvantage   Professional   Professional   Increased   Implica-ons  for   groups   judgment   burden?   prac-ce  
    • •  What  is  a  ‘Digital  Me’  ?  •  Ingredients  •  Some  challenges  ahead  and  key  to   implementa-on  •  Conclusions  
    • Conclusions   •  Medicine  today  is  a  driver  of  ICT  innova-on  and  vice   versa     •  Advanced  IT  allows  us  to  analyse  pa-ents  all  the  way  up   from  their  own  DNA  sequences   •  A  personalised  ‘digital  Me‘  approach  is  expected  to  lead   to  improved     –  health  outcomes     –  drugs/treatments   –  disease  preven-on   –  evidence-­‐based  decision-­‐making   –  lifestyle  choices  for  global  ci-zens  
    • Thank  you  for  your  aenAon!   Nour  Shublaq   University  College  London,  UK   n.shublaq@ucl.ac.uk