The use of WPS in a Science Collaboration Environment  implementation of a Greenhouse Gas Emissions model
Topics Introduce Landcare Research Our Vision Architecture Model implementation Closing thoughts Previous slide: Cloud Gat...
Manaaki Whenua - Manaaki Tangata care for the land - care for the people http://www.landcareresearch.co.nz Sustaining biod...
LRIS: Land Resource Information System 1978-2008+ NZLRI NZLRI NSD Soil DB S-map Soil DB : National Coverage of Environment...
Observations Data and Computational pressure: NOW – 25m national data density  NEAR FUTURE – sub 5m national data density ...
The Vision: SCENZ-Grid SCE NZ-Grid proposes that we can: Do science research on-line together   Share each other’s data – ...
Phase 1: Regolith Portlet REANNZ funded project (2007-2009):  GNS and Landcare Research  QMAP WMS NZFSL WMS Lookup WS Port...
Phase 2: Platform FRST Backbone funding and BeSTGRID integration (2009-)
'SDI' <ul><li>Find </li><ul><li>Koordinates </li></ul></ul><ul><li>Visualize </li><ul><li>Geoserver / OL </li></ul></ul><u...
WPS Geoserver Globus / Grisu ~1.16 TFLOPS Air cooled Gb Ethernet nterconnects 4.2kW power 104 Intel Xeon cores 2.8GHz each...
WPS Extensions: Computation - Collaboration WPS – G Current: Unicore, Gridgain Planning to implement Grisu => waiting for ...
LCR Algorithm Repository LCR (Landcare Research) Specific algorithms Raster implementations: Emissions Modeling Landcare r...
Modularity <ul><li>Algorithms: fully modular
Parsers: problem with xml parser </li></ul><ul><ul><li>Diff requestHandler (left lcr branch, right trunk) </li></ul></ul>
Emissions Algorithm - inputs <ul><li>Landuse (dairy, sheep/beef, deer) </li><ul><li>Grid => WCS Geotiff </li></ul><li>Stoc...
<ul><ProcessDescription wps:processVersion=&quot;2&quot; storeSupported=&quot;true&quot; statusSupported=&quot;false&quot;...
Current Issues <ul><li>Fetching WCS coverages efficiently </li><ul><li>Crop to smallest extent
No checking for CRS validity </li></ul><li>Value Attribute Table implementation </li><ul><li>Custom XML / GeoTiff 'linkup'...
Closing thoughts (1) <ul><li>OGC Standards => Big and Bulky </li><ul><li>WPS very flexible but 'heavyweight' </li></ul><li...
Upcoming SlideShare
Loading in …5
×

Ifgi presentation

380 views
360 views

Published on

Presentation about scenz-grid vision for GI-Forum

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
380
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Ifgi presentation

  1. 1. The use of WPS in a Science Collaboration Environment implementation of a Greenhouse Gas Emissions model
  2. 2. Topics Introduce Landcare Research Our Vision Architecture Model implementation Closing thoughts Previous slide: Cloud Gate, Chicago. Photo: Niels Hoffmann
  3. 3. Manaaki Whenua - Manaaki Tangata care for the land - care for the people http://www.landcareresearch.co.nz Sustaining biodiversity & restoration Sustaining land environments Sustaining business & living Climate change Maori sustainable futures Weeds, pests and diseases Capability and collaboration Landcare Research Manaaki Whenua Key outcomes Cross-cutting outcomes Underpinning strengths
  4. 4. LRIS: Land Resource Information System 1978-2008+ NZLRI NZLRI NSD Soil DB S-map Soil DB : National Coverage of Environmental Data at 1:50:000 to 15m resolution : Leading the Implementation of geospatial web-delivery in NZ S-Map soil NZLRI ECOSAT veg Curvature horiz Curvature perp Curvature slope S-map Landform Elements S-map siblings S-map pedo-func S-map variability Height Aspect Slope FSL:Phys FSL:Chem FSL:Wet FSL:Env NZEEM Soil loss tons/ha/yr ECOSAT fPAR ECOSAT Woody ECOSAT Indig. Forest PinRadGrow FertReq StockCCap LUNZ & LENZ Rock Slope Soil Erosion Veg LUC
  5. 5. Observations Data and Computational pressure: NOW – 25m national data density NEAR FUTURE – sub 5m national data density with significant peri-urban sub 1m LIDAR data density Modelling environment NOW – essentially batch oriented & 2.5D DESIRED – interactive 4D, with real-time visualisation feedback Managed data NOW – preserve the data, memorise the model DESIRED – keep the model for on-demand re-use
  6. 6. The Vision: SCENZ-Grid SCE NZ-Grid proposes that we can: Do science research on-line together Share each other’s data – not duplicate it Collaboratively develop & use shared models / workflows Use shared compute resources Connect researchers directly to consumers : policy / managers / educators / public
  7. 7. Phase 1: Regolith Portlet REANNZ funded project (2007-2009): GNS and Landcare Research QMAP WMS NZFSL WMS Lookup WS Portal User WF Engine User Interface View Portlet WebService WorkFlow Engine Model Kepler Mono / Java class Web Services Data: WMS Business Logic: SOAP
  8. 8. Phase 2: Platform FRST Backbone funding and BeSTGRID integration (2009-)
  9. 9. 'SDI' <ul><li>Find </li><ul><li>Koordinates </li></ul></ul><ul><li>Visualize </li><ul><li>Geoserver / OL </li></ul></ul><ul><li>Process </li><ul><li>52N WPS </li></ul></ul>
  10. 10. WPS Geoserver Globus / Grisu ~1.16 TFLOPS Air cooled Gb Ethernet nterconnects 4.2kW power 104 Intel Xeon cores 2.8GHz each 386GB RAM 2.6TB storage
  11. 11. WPS Extensions: Computation - Collaboration WPS – G Current: Unicore, Gridgain Planning to implement Grisu => waiting for release v3 WPS – T Started porting to Apache ODE 80% complete, need to refactor the execute part to use the new(er) architecture
  12. 12. LCR Algorithm Repository LCR (Landcare Research) Specific algorithms Raster implementations: Emissions Modeling Landcare repository Sextante repository
  13. 13. Modularity <ul><li>Algorithms: fully modular
  14. 14. Parsers: problem with xml parser </li></ul><ul><ul><li>Diff requestHandler (left lcr branch, right trunk) </li></ul></ul>
  15. 15. Emissions Algorithm - inputs <ul><li>Landuse (dairy, sheep/beef, deer) </li><ul><li>Grid => WCS Geotiff </li></ul><li>Stocking rate (animals/ha) </li><ul><li>Table => xml </li></ul><li>Sheep/Beef Ratio (dependent per district) </li><ul><li>Grid => WCS Geotiff </li></ul><li>Methane + Nitrous Oxide => CO2eq/animal/year </li><ul><li>Table => xml </li></ul></ul>
  16. 16. <ul><ProcessDescription wps:processVersion=&quot;2&quot; storeSupported=&quot;true&quot; statusSupported=&quot;false&quot;> </ul><ows:Identifier>org.n52.wps.server.lcr.algorithm.EmissionsAlgorithm</ows:Identifier> <DataInputs> <ows:Identifier> landuse </ows:Identifier> <MimeType>image/tiff</MimeType> <ows:Identifier> districts </ows:Identifier> <MimeType>image/tiff</MimeType> <ows:Identifier> emissionslookup </ows:Identifier> <MimeType>text/XML</MimeType> <Schema>http://arwen/schemas/EmissionsTable.xsd</Schema> <ows:Identifier> stockingrate </ows:Identifier> <MimeType>text/XML</MimeType> <Schema>http://arwen/schemas/EmissionsTable.xsd</Schema> <ows:Identifier> districtlookup </ows:Identifier> <MimeType>text/XML</MimeType> <Schema> http://arwen/schemas/EmissionsTable.xsd </Schema> <ows:Identifier>result</ows:Identifier> <MimeType>image/tiff</MimeType> </ProcessDescription> Emissions Algorithm – link Value Attribute Table for Landuse and Districts <ul><li>XML Key-Value pair implementation </li><ul><li>Key = raster value, Value = list of attributes </li></ul></ul>
  17. 17. Current Issues <ul><li>Fetching WCS coverages efficiently </li><ul><li>Crop to smallest extent
  18. 18. No checking for CRS validity </li></ul><li>Value Attribute Table implementation </li><ul><li>Custom XML / GeoTiff 'linkup' </li><ul><li>GMLJP2 ??? </li></ul></ul><li>Client with raster capabilities </li></ul>
  19. 19. Closing thoughts (1) <ul><li>OGC Standards => Big and Bulky </li><ul><li>WPS very flexible but 'heavyweight' </li></ul><li>Like to be small and nimble </li><ul><li>(rest, custom architecture) </li></ul><li>Selling point for OGC is Interoperability </li><ul><li>need good clients => again difficult because of flexibility of standards </li></ul><li>WPS 2.0 profiles ? </li></ul>
  20. 20. Closing thoughts (2) <ul><li>WPS-G / Grid processing </li><ul><li>Scalability / high availability </li><ul><li>Easy to implement, but also possible via alternatives </li></ul><li>Parallelization </li><ul><li>new class of problems
  21. 21. No easy solution for splitting (spatial) problems
  22. 22. split/merge might still be the bottleneck </li></ul></ul></ul>
  23. 23. Questions ? [email_address] Milford Sound, NZ. Photo: Niels Hoffmann

×