Tiger Grass, Thysanolaena maxima (Roxb.)     O. Kuntze: A review of its biology                 and uses                  ...
Presentation Outline               Purpose of the Review               Brief Biology               Uses                ...
Purpose of the Review To come up with a comprehensive compilation of  literature about the potentials of T. maxima as a  ...
BIOLOGY
Brief Biology Taxonomic Characteristics   Family      Poaceae or Graminae   Scientific Name      Thysanolaena maxima ...
Biogeography (Southeast Asia)
Biogeography (Philippines)Ilocos Norte, Apayao,Bontoc, Benguet, NuevaViscaya, Nueva Ecija, LaUnion, Bulacan,Zambales, Bata...
Morphoanatomy
Life Cycle1        2   3   45        6   7   8
USES
USES   Industry   Medicine   Agriculture   Bioengineering   Phytoremediation   Climate Change Adaptation   Others
Industry
Soft Brooms High demand in India, Nepal, Bangladesh, China, Japan and  Middle East One hectare yields US$503 (Vernon, 20...
Unique “X” Species in Laos?             “A new variety of tiger grass,             introduced to Houn district in         ...
Pulp and Paper          A potential source of raw material           for pulp-and- paper making           industries eith...
Pulp and Paper                 Pulps are processed into insulation                  boards with very good strength but   ...
Medicine
Medicinal UsesROOTS Positively respond against P. aeruginosa, S. aureus, B. subtillis, E.  coli (Mahato and Chaudhary, 20...
Agriculture
Agricultural Uses Tender culms, leaves and tips are used as fodders  for cattle, elephant, buffaloes and rabbits. One of...
Rabbit Experiment(Rohilla & Bujarbaruah, 2000)PARAMETER                 T1                    T2                        T3...
Nutritional Values of Leaf(Bhuchar, 2008)Parameter              Palni et al.   Singh et al.    Bhuchar                    ...
Drawbacks Produces more foliage (Kafle, 2005), however  its leaf to stem ratio is less (Livestalk, 2011). Palatability i...
Bioengineering
Soil and Water Conservation Its cultivation promotes nature friendly, cost-  effective and sustainable use of fragile and...
Soil and Water Conservation Contour planting with tiger grass shows better  performance in terms of vegetative cover,  su...
Soil and Water Conservation Improves soil fertility and productivity when  planted with Cajanas cajan than as a sole crop...
Bioengineering Plot Type                 Water runoff    Soil loss          CV water      CV soil                         ...
Bioengineering Engineering functions of grasses: catch, armor,  reinforce, anchor, support and drain (Clark and  Hellin, ...
Bioengineering Characteristics of T. maxima(Kafle, 2005) Rooting depth                               Quantity of plantin...
Bioengineering
Phytoremediation
Bo Ngam Lead Mine, Thailand(Rotkittikhun, et al., 2007)
Lead Experiment(Rotkittikhun, et al., 2007) T. maxima is comparable with  vetiver grass for  phytostabilization. Shows v...
Water Level Experiment(Sengupta, et al., 2004) Independent: water level (below surface,  saturated, 5 cm, 10 cm, 20 cm) ...
Water Level Experiment(Sengupta, et al., 2004) Soil and Water Nutrients:     No significant change in carbon     P and ...
Fertilization Experiment(Sengupta, et al., 2004) Independent: application of DHAP (control, 50,  100, 250 and 500 mg/kg)...
Fertilization Experiment(Sengupta, et al., 2004) Soil and Water Nutrients:     No significant change in carbon     P an...
Climate Change   Adaptation
Adapted for Climate Change A C4 species; can withstand drought (Saxena and  Ramakrishnan, 1983). Villagers (65%) in Nepa...
Other Uses
Other Uses Leaves have been used as substrates in the  cultivation of oyster mushroom, Pleurotus sp. Leaf extract exhibi...
Challenges
Challenges Overconsumption makes it vulnerable to local  extinction Reported to be susceptible to fire (NCVST, 2009)  as...
CONCLUSIONS
Conclusions There is a body of scientific evidence supporting  the potential and significance of T. maximaI as a  multi-p...
Conclusions It can help mitigate climate-change related  disasters because of its water and soil  conservation and bioeng...
THANK YOU!
Upcoming SlideShare
Loading in …5
×

Fetalvero Paper

742 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
742
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
18
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Fetalvero Paper

  1. 1. Tiger Grass, Thysanolaena maxima (Roxb.) O. Kuntze: A review of its biology and uses by Eddie G. Fetalvero EDSC 350 PhD in Education (major in Biology Educ.) UP Open University, Los Baños ,Laguna
  2. 2. Presentation Outline  Purpose of the Review  Brief Biology  Uses  Industry  Medicine  Agriculture  Bioengineering  Phytoremediation  Climate Change Adaptation  Other Uses  Challenges  Conclusion
  3. 3. Purpose of the Review To come up with a comprehensive compilation of literature about the potentials of T. maxima as a multipurpose crop backed by scientific studies and investigations, since in the Philippines, it is mainly utilized as materials for soft broom making only. To provide inputs for the R&D unit of my University and other R&D institutions in the country in setting the research roadmap for this potential crop.
  4. 4. BIOLOGY
  5. 5. Brief Biology Taxonomic Characteristics  Family  Poaceae or Graminae  Scientific Name  Thysanolaena maxima (Roxb.) O. Ktze.  Local/Common Names:  English  tiger grass, broom grass, bouquet grass  Philippines  tambo (Tagalog), boi-boi (Ilocano), lasa (Bicol), sugbo (Catanduanes), luway (Romblon)
  6. 6. Biogeography (Southeast Asia)
  7. 7. Biogeography (Philippines)Ilocos Norte, Apayao,Bontoc, Benguet, NuevaViscaya, Nueva Ecija, LaUnion, Bulacan,Zambales, Bataan,Laguna, Tayabas,Sorsogon, Cebu, Mindoro,Palawan, Batangas,Romblon and other placesin Mindanao
  8. 8. Morphoanatomy
  9. 9. Life Cycle1 2 3 45 6 7 8
  10. 10. USES
  11. 11. USES Industry Medicine Agriculture Bioengineering Phytoremediation Climate Change Adaptation Others
  12. 12. Industry
  13. 13. Soft Brooms High demand in India, Nepal, Bangladesh, China, Japan and Middle East One hectare yields US$503 (Vernon, 2006) Annual Indian broom market estimate is US$60M (Shankar et al., 2001) 1 ton of flowers processed into soft brooms fetches about US$1,333 (Bhuchar, 2008) Worth of flowers increases up to 2.65 times if processed into soft brooms (Fetalvero et al., 2011) Return on Investment is 1.7 times of the total investment (Bhuchar, 2008)
  14. 14. Unique “X” Species in Laos? “A new variety of tiger grass, introduced to Houn district in Oudomxay by a Thai investor, has more bristles and produces different ‘male’ and ‘female’ stems. The female stems are preferred for broom making, as they have many more bristles. The taxonomy of this new variety is not yet clear.” http://www.tabi.la/lao-ntfpwiki/index.php/Dok_khaem
  15. 15. Pulp and Paper  A potential source of raw material for pulp-and- paper making industries either alone or in combination with other raw materials (Saikia et al., 1992)  Fibers (1.25 mm long) are obtained from the culms at 45% yield and are processed into papers  Paper properties:  Burst factor: 30  Breaking length: 3,555  Tear factor: 106
  16. 16. Pulp and Paper  Pulps are processed into insulation boards with very good strength but moderate heat insulating properties  Moisture resistance compared favorably with the imported ones (Razzaque and Khan, 1978) Leaves have been tried in cellulase and ethanol production (Yimyong et al., 2005)
  17. 17. Medicine
  18. 18. Medicinal UsesROOTS Positively respond against P. aeruginosa, S. aureus, B. subtillis, E. coli (Mahato and Chaudhary, 2005) Decoction: bronchial problem, flatulence, mouthwash during fever, halitosis, mouth sore, anthelmintic Paste: boilsFLOWERS Poultice: rheumatic pain and skin swelling Paste: contraceptive for women, boils and cancerSTEM Juice of young stem: red and dirty eyes
  19. 19. Agriculture
  20. 20. Agricultural Uses Tender culms, leaves and tips are used as fodders for cattle, elephant, buffaloes and rabbits. One of the most preferred fodders for butterfat production among ruminants; palatable to livestock even during rain or cold weather conditions It satisfies appetite of buffalo for 6.33 hrs. (Subba et al., 2004). Rumen degradability after 48 h ranges within 404 to 488 g/kg (Huque et al., 2001)
  21. 21. Rabbit Experiment(Rohilla & Bujarbaruah, 2000)PARAMETER T1 T2 T3 (fresh T. maxima (100% dried and ground (mixture of 40% dried and leaves) T. maxima leaves) ground T. maxima leaves with 60% concentrate)Growth 9.76 11.78 15.73(g/day)Dry Matter 106.99 112.65 115.72Intake (DMI)(g/day) Subjects: 18 rabbits (6 per treatment), 10-12 weeks old Duration: 105 days Result: Tiger grass feeding had a significant effect on growth and dry matter intake (DMI) of rabbits (α<0.05).
  22. 22. Nutritional Values of Leaf(Bhuchar, 2008)Parameter Palni et al. Singh et al. Bhuchar (1994) (1995) (2002)Digestibility 57.9 - 54.3 - 57.9Total Ash 11.8 5.65 10.7 - 11.8Ether extract 6.67 1.94 4.2 - 6.7N-free extract 33.1 51.6 39.3 - 44.6Crude protein 18.1 10.2 15.1 - 18.2Crude fiber 30.4 30.5 29.5 - 31.0Cellulose 30.2 - 30.3 - 37.8Hemicellulose 29.6 - 29.6 - 34.4Lignin 9.1 - 4.6 -9.2 The leaves have balanced proportion of nutrients qualifying them as good forage and fodder for livestocks
  23. 23. Drawbacks Produces more foliage (Kafle, 2005), however its leaf to stem ratio is less (Livestalk, 2011). Palatability is less; causes haematuria among cattle and buffaloes (Joshil & Singh, 1989). Preferred fodder for milk production, but animal response is low (Subba et al., 2002).
  24. 24. Bioengineering
  25. 25. Soil and Water Conservation Its cultivation promotes nature friendly, cost- effective and sustainable use of fragile and degraded lands Roots bind the soil and protect topsoil and nutrient erosion on sloping terrain, agricultural fields and landslide. Used as backup fodder grass on contour strips and terrace risers, a good soil cover, a crop to maximize land use, a tool for management of pine forest, a protection from forest fires and a slope stabilizer in hills and mountains.
  26. 26. Soil and Water Conservation Contour planting with tiger grass shows better performance in terms of vegetative cover, surface runoff and erosion yield in newly burned pine watershed; cheapest among the treatments investigated for revegetation and rehabilitation (Costales, 1985). Suitable hedgerow species in controlling soil loss (55-80%) and runoff (30-70%) using CHIAT (Khisa, 2001).
  27. 27. Soil and Water Conservation Improves soil fertility and productivity when planted with Cajanas cajan than as a sole crop (RFRI, 2007). Improves forage production and soil conservation if planted in agriculture terrace margins without affecting the productivity of the crops. Effective vegetative barrier in controlling soil erosion, improving crop yield and restoring soil fertility (although not as comparable with the other two grasses studied) (Sudhishri et al., 2008).
  28. 28. Bioengineering Plot Type Water runoff Soil loss CV water CV soil (liter) (kg) (%) (%) Maize 25±4 1.51±0.16 69 56 Finger-mullet 18±3 1.32±0.14 78 62 Mixed cropping 12±3 0.95±0.12 85 73 Large cardamom 15±3 0.45±0.06 81 87 Broom grass 10±2 0.41±0.07 88 88 Bare land 80±11 3.46±0.35 - - Land Use Type Soil loss (t/yr/ha) Runoff (%) Outward sloping terrace 10.4 2.8 Degraded land 21.3 40.1 Degraded land treated with broom grass 12.6 16.5CV: Conservation value
  29. 29. Bioengineering Engineering functions of grasses: catch, armor, reinforce, anchor, support and drain (Clark and Hellin, 1996). T. maxima has excellent catch, moderately useful armor, excellent reinforce and moderately useful support. Hydrologic functions: excellent soil binding capacity and ground surface protection, interception, storage, leaf drip but moderate infiltration (Kafle, 2005).
  30. 30. Bioengineering Characteristics of T. maxima(Kafle, 2005) Rooting depth  Quantity of planting material required 7.0 to 9.5 m For single row of 5m, 10m, 25m, 50m, 75m, 100m length, quantity of planting Root lateral spread material is 4, 10, 21, 31 and 41 10.3 to 13.2 m radial respectively.  For double row of 5m, 10m, 25m, 50m, Height 75m, 100m length, quantity of planting 3.2 to 4.9 m material is 5, 11, 29, 62, 92 and 122 respectively. Ground surface area protected by foliage against direct raindrop effect 47.19 to 82.87 m2  Shade effect Mean: 66.49 m2 Max. 6.8m for mean height 3.9m Volume of Soil bound by roots 2.33 to 5.20 m3  Type of root Mean: 3.78 m3 Fibrous Effective Spacing  Propagation Plain: 2.40 m Slip cuttings Slope: 1.80 m
  31. 31. Bioengineering
  32. 32. Phytoremediation
  33. 33. Bo Ngam Lead Mine, Thailand(Rotkittikhun, et al., 2007)
  34. 34. Lead Experiment(Rotkittikhun, et al., 2007) T. maxima is comparable with vetiver grass for phytostabilization. Shows very high tolerance to lead concentrations in its roots and shoots up to 100,000 mg/kg. Tiger grass Application of inorganic Vetiver grass fertilizer (150mg/kg) improves its growth and uptake of Pb, while amending the soil with pig manure reduces the roots’ uptake and transport of Pb.
  35. 35. Water Level Experiment(Sengupta, et al., 2004) Independent: water level (below surface, saturated, 5 cm, 10 cm, 20 cm) Dependent: Soil and water nutrients, plant growth and nutrient uptake Controlled: 60 x 60 x 60 cm cement tank Nos. of replication: 3 Plants per tank: 5 Duration: 12 weeks Measurements: before and after
  36. 36. Water Level Experiment(Sengupta, et al., 2004) Soil and Water Nutrients:  No significant change in carbon  P and N concentrations decreased with time Plant Growth  Height increase: 79 cm  Shoot increase: 12 (20 cm treatment)  Biomass increase: 2.85g (leaves), 5.56g (stems), 5.32g (roots) Nutrient Uptake  P accumulation in wet soils: 0.37g (leaves), 0.74g (stems) and 0.66g (roots)  P accumulation at 20 cm water depth: 1.18g (leaves), 5.4g (stems), 3.5g (roots)  N concentration in leaves increased by 1.2% ranging from 12.8mg in wet soil to 63.4 mg at 20 cm water depth
  37. 37. Fertilization Experiment(Sengupta, et al., 2004) Independent: application of DHAP (control, 50, 100, 250 and 500 mg/kg) Dependent: soil nutrients, growth, biomass and nutrient uptake Controlled: pot size Nos. of replication: 3 Plants per pot: 4 Duration: 9 weeks Measurements: every after 3 weeks for 9 weeks
  38. 38. Fertilization Experiment(Sengupta, et al., 2004) Soil and Water Nutrients:  No significant change in carbon  P and N concentrations increased with increasing DAHP supply Plant Growth  Shoot length increase: 21.9 cm (500mg)  Biomass increase: 0.55g (leaves), 0.55g (stems), 0.93g (roots) Nutrient Uptake  P accumulation is highest in roots: 0.046% (control), 0.208% (500 mg)  N concentration is highest in the leaves
  39. 39. Climate Change Adaptation
  40. 40. Adapted for Climate Change A C4 species; can withstand drought (Saxena and Ramakrishnan, 1983). Villagers (65%) in Nepal reported that T. maxima is the best adapted species for climate change (Khadka, 2011). Significant rise (83%) in tiger grass cultivation in Meghalaya, India during the past three decades because it is least affected by climate change (Lyngdoh & Baishya, 2010).
  41. 41. Other Uses
  42. 42. Other Uses Leaves have been used as substrates in the cultivation of oyster mushroom, Pleurotus sp. Leaf extract exhibited moderate attractive potency to oriental fruit fly, a destructive pest Weed suppressor, support stake for trailing crops, landscape and ornament Leaves: mulching, roofing material, wrapper for steamed foods Culms: fuel, reed-pens, support for cotton wick, wall building material Panicles: organic paintbrush, carnival costumes, decorative extenders
  43. 43. Challenges
  44. 44. Challenges Overconsumption makes it vulnerable to local extinction Reported to be susceptible to fire (NCVST, 2009) as against report of Baldino (2002). Depletion of gene pool Capacity to outcompete native species
  45. 45. CONCLUSIONS
  46. 46. Conclusions There is a body of scientific evidence supporting the potential and significance of T. maximaI as a multi-purpose crop. The grass is best adapted for climate change due to its C4 nature and based from reports from the field about its tolerance to drought plus the increasing number of farms established each year. Can be an environment-friendly alternative in restoring mined out areas in the country as it was found to absorb lead and antimony.
  47. 47. Conclusions It can help mitigate climate-change related disasters because of its water and soil conservation and bioengineering potential. Its potential as a traditional herbal remedy must be scientifically validated and its potential as feeds must be perfected. Its potential as feedstock for biomass technologies must be explored through PPP.
  48. 48. THANK YOU!

×