• Like
clustering Algorithms for Mobile Ad Hoc Networking (Slides for my opening defense)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

clustering Algorithms for Mobile Ad Hoc Networking (Slides for my opening defense)

  • 2,135 views
Published

 

Published in Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
2,135
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
114
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. The Research of Clustering Algorithms for Highly Mobile Ad Hoc Networks
  • 2. 2
  • 3. 3
  • 4. IBM: Smarter Planet “The world isn’t just getting smaller and atter, it is actually becoming smarter. Today, almost anything—any physical object, process or system—can be instrumented, inter- connected and infused with intelligence.” - IBM, ”Let's build a smarter planet” 4
  • 5. Banking Buildings Cities Cloud Education Energy Computing Food Government Healthcare Smarter ... Infrastructure Intelligence Oil Public Products Rail Safety Retail Stimulus Telecom Tra c Water Work 5
  • 6. 6
  • 7. Television Network Wireless Sensor Vehicle Comm. Network ! Network ! an ized an ized -org -org Self Self Internet Ubiquitous Telephone Networks Network Wireless Mesh Special-Purpose Network d ! Network ! a nize an ized g g Sel f-or Sel f-or Electricity Network 7
  • 8. (Mobile Ad Hoc Network, MANET) 8
  • 9. 9
  • 10. 10
  • 11. 11
  • 12. 2.1 TI, DARPA, 1997 GloMo, DARPA, 1994 SURAN, DARPA, 1983 PRNet, DARPA, 1973 1995 1990 1 985 1980 MANET WorkGroup IETF, 1997.6 1 975 1 970 IEEE 802.11 WorkGroup “Ad Hoc”, 1991 12
  • 13. 2.1 • UCLA, M. Gerla, • Cornell, Z. Hass, • UIUC, N. Vaidaya, • Maryland, S. Tripathi, • UCSB, E. Belding-Royer, • UCSC, J. Garcia, 13
  • 14. 2.1 D.Baker and A. Ephremides, “The architectural organization of a mobile radio network via a distributed algorithm,” IEEE Trans. on Communications, vol. 29, no. 11, pp. 1694-1701, 1981. 14
  • 15. 2.1 M. Gerla and J.T.C. Tsai, “Multicluster, mobile, multimedia radio network,” ACM Journal on Wireless Networks, vol. 1, no. 3, pp. 255-265, 1995. IEEE Xplore: “Ad Hoc” & “Clustering” (in Journal & Top Conferences) 30 23 15 8 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 15
  • 16. 2.1 16
  • 17. 2.2 J. Yu and P. Chong, “A Survey of Clustering Schemes for Mobile Ad Hoc Networks,” IEEE Communications Surveys & Tutorials, vol. 7, no. 1, pp. 32-48, 2004. (Dominating Set) (Mobility-aware) (Energy E cient) (Load Balancing) (Combined-metrics-based) 17
  • 18. a. (Unweighted Graph) G S G S S S (Dominating Set) DS (Connected Dominating Set) 18
  • 19. b. 19
  • 20. b. 19
  • 21. b. 20
  • 22. b. 20
  • 23. c. F Th E N 21
  • 24. c. F Th N E Y 22
  • 25. d. No. of Cluster Members ∈ [Opt. Lower Bound, Opt. Upper Bound] ✓ ! 23
  • 26. e. ∑ i Parameter i x Weighting Factor i W1 W2 W3 W4 24
  • 27. Dominating Set - Based Energy Efficient Combined-metrics-based Mobility - Aware Load Balancing Newly Proposed Algorithms 25
  • 28. 2.3 26
  • 29. 2.3 Threshold 1 E Weighting Factor 2 Opt. Upper Bound A B Scenario 1 ✓ Opt. Lower Bound C Scenario 2 ! D Weighting Factor 1 27
  • 30. S. Bouk, and I. Sasase, “Energy E cient and Stable Weight Based Clustering for mobile ad hoc networks,” in Proc. Signal Processing and Communication Systems 2008, pp. 1-10. WCA EECA EECA EECA 600 1200 1800 2400 3000 3600 28
  • 31. 2.3 29
  • 32. 2.3 30
  • 33. M. Chatterjee, S. K. Das, and D. Turgut, “An On-Demand Weighted Clustering Algorithm (WCA) for Ad hoc Networks,” in Proc. IEEE Globecom 2000, pp. 1697–701. WCA WCA DWCA DWCA 32
  • 34. 2.3 for Others for Speci c Functions for Re-Transmission for Mobility for Basic Operations 33
  • 35. “A lack of realism regarding of the scenario in which MANET will be applied coupled with a lack of realism during the design of MANET are the main causes of MANET running a high risk of failure.” M. Conti and S. Giordano, “Multihop Ad Hoc Networking: The Theory”, Communications Magazine, IEEE (2007) vol. 45 (4) pp. 78 - 86 34
  • 36. 35
  • 37. 3.1 36
  • 38. 3.2 Wi Σ j . ωj 37
  • 39. Wi . ω 1 . ω 2 . ω 3 . ω 4 ... 38
  • 40. Wi v ω . 1 . ω 2 . ω 3 . ω 4 ... v 39
  • 41. Doppler Shift - based Relative Speed Estimation Algorithm D fA !" !" A A fA E θ2 E D C fdC θ2 θ 1 t∆ PC θ1 v C m m t∆ fdC B fdB B PC fdB PB PB v Approaching Scenario Receding Scenario ￿ ￿ ￿ ￿ fdB · c P∆ P∆ P∆ v= · 2· 4 + − fA PB K PC K PB K 40
  • 42. N 3, 5, 7 θ1 = 15˚, 30˚, 45˚, 60˚, 75˚ n 2.5, 3.0, 3.5 v 5, 10, 15, 20, 25 m/s 3×5×3×5 225 × 100 22500 41
  • 43. Analyzation of Estimation Error in θ1 = 45˚ , N = 5 v (m/s) 5 10 15 20 25 n = 2.5 0.435 0.926 1.931 2.702 3.645 e n = 3.0 1.456 2.039 3.325 4.155 4.747 v n = 3.5 1.333 2.298 4.747 5.890 6.429 n = 2.5 2.347 4.521 5.904 7.218 8.120 σe n = 3.0 2.842 5.863 8.472 9.433 10.687 n = 3.5 5.506 5.159 6.736 11.433 12.723 42
  • 44. Wi v ω E ω . 1 . 2 . ω 3 . ω 4 ... 70% 30% 43
  • 45. Fixed Data Generation Model Dynamic Data Generation Model 44
  • 46. Wi v ω E ω δ ω . 1 . 2 . 3 . ω 4 ... [a, b] 45
  • 47. Wi v ω E ω δ ω d ω . 1 . 2 . 3 . 4 ... # "# """ "" " ! ! " "" """ "# # 46
  • 48. Wi v ω E ω δ ω d ω . 1 . 2 . 3 . 4 ... Scenario 1 ω2 ω4 ω1 ω3 Scenario 2 Gray Theory ω1ω2ω3ω4 based Algorithm Scenario 3 ω1ω2ω3ω4 47
  • 49. 3.2 48
  • 50. 3.2 Stochastic Geometry Point Process Theory Random Graph The Probabilistic Method 49
  • 51. 3.2 Active (Almost All) Active Clustering Routing Passive Hybrid (Proposed) Clustering Passive Routing Hybrid Routing (?) Clustering 50
  • 52. 3.2 k-hop 1-hop 3-hop 51
  • 53. 52
  • 54. MatLab Scenarios Function GUI Algorithms Nodes 53 4.1
  • 55. 4.1 J.G. Proakis, A. Goldsmith, T.S. Rappaport, S. Haykin, J.G. Proakis, B.A. Forouzan, 54
  • 56. 4.1 M. Barbeau <Principles of Ad Hoc Networking> S. Basagni <Mobile Ad Hoc Networking> A. Boukerche <Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks> L. Gavrilovska <Ad Hoc Networking Towards Seamless Communications> R. Hekmat <Ad-hoc Networks: Fundamental Properties and Network Topologies> P. Santi <Topology Control in Wireless Ad Hoc and Sensor Networks> 55
  • 57. 4.1 1. M. Ni, H. Wu, B. Ai and Z. Zhong, “Composite Recon gurable Multi-Clustering Ad Hoc Network”, , Vol. 33, No.2, 2009, p 94-97. 2. M. Ni, Z. Zhong and H. Wu, “A Novel Energy E cient Clustering Algorithm for Dynamic Wireless Sensor Network”, to appear in Journal of Internet Technology, No.4, 2009. 1. M. Ni, Z. Zhong, H. Wu and D. Zhao, “An Energy E cient Clustering Scheme for Mobile Ad Hoc Networks”, Submitted to IEEE VTC ‘2010 Spring. 2. M. Ni, Z. Zhong, H. Wu and D. Zhao, “A New Stable Clustering Scheme for Highly Mobile Ad Hoc Networks”, Accepted for IEEE WCNC 2010. 3. X. Qiao, M. Ni and Z. Tan, “A Directional Antennas-Based Topology Control Algorithm for Two- tiered Wireless Sensor Network”, IEEE WiCOM 2009. 4. M. Ni, Z. Zhong and R. Xu, “An Energy E cient Routing Scheme for Wireless Sensor Network in Heavy Haul Railway Transportation”, International Conference of International Heavy Haul Association (IHHA) 2009. 56
  • 58. 4.2 J.A. Gubner, <Probability and Random Process for ECE> P.V. Mieghem, <Performance Analysis of Communications Network and System> A. Baddeley, <Spatial Point Process and their Applications> IEEE Wireless Comm., IEEE Comm., IEEE Network, IEEE Trans. on Networking, ACM MobiCom, ACM MobiHoc, IEEE InfoCom, IEEE GlobeCom, IEEE ICC 8-10 57
  • 59. Stage 1 1 2 3 4 5 6 7 8 9 10 11 12 2010 " 58
  • 60. Stage 2 1 2 3 4 5 6 7 8 9 10 11 12 2010 58
  • 61. Stage 3 1 2 3 4 5 6 7 8 9 10 11 12 2010 58
  • 62. Stage 4 12 1 2 3 4 5 6 7 8 9 10 11 12 2011 59
  • 63. Stage 5 12 1 2 3 4 5 6 7 8 9 10 11 12 2011 59
  • 64. Stage 6 12 1 2 3 4 5 6 7 8 9 10 11 12 2011 59
  • 65. 2009.12