Your SlideShare is downloading. ×
Prime Factorization
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Prime Factorization

7,363

Published on

Using prime factorization to identify perfect squares.

Using prime factorization to identify perfect squares.

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
7,363
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Using Prime Factorization to Identify Perfect Squares
  • 2. What is Prime Factorization? Prime factorization is to write a composite number as a product of its prime factors. (www.northstarmath.com) Think back . . . A Prime Number is a whole number, greater than 1, that can be evenly divided only by 1 or itself.
  • 3. Example : What are the prime factors of 12? We can figure this out using a factor tree. 12 6 x 2 2 x 3 x 2 The prime factors of 12 are 2, 2 & 3!
  • 4. Example : What are the prime factors of 48? 48 6 x 8 2 x 3 x 2 x 4 2 x 3 x 2 x 2 x 2 The prime factors of 48 are, 2, 2, 2, 2, & 3!
  • 5. The prime factorization method can also be used to demonstrate that a number is not a perfect square. From the factor tree below, notice that none of the prime factors of 280 are present an even number of times. 280 10 x 28 2 x 5 x 2 x 14 2 x 5 x 2 x 2 x 7 280 = 2 x 2 x 2 x 5 x 7
  • 6. A perfect square has each distinct prime factor occurring an even number of times.
  • 7. Use the Prime Factorization Method to decide if 64 is a perfect square. 64 2 x 32 2 x 2 x 16 2 x 2 x 2 x 8 2 x 2 x 2 x 2 x 4 2 x 2 x 2 x 2 x 2 x 2 64 = 2 x 2 x 2 x 2 x 2 x 2 The factor 2 appears 6 times (an even number of time). We can say that 64 is a perfect square because . . .
  • 8. A perfect square has each distinct prime factor occurring an even number of times.

×