Your SlideShare is downloading. ×
Open Data Vorlesung Termin 12: Datenaktualiserung und Transitionen, Programming Coaching
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Open Data Vorlesung Termin 12: Datenaktualiserung und Transitionen, Programming Coaching

111
views

Published on

Published in: Education

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
111
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Open Data: Datenmanagement und Visualisierung Datenaktualiserung und Transitionen, Programming Coaching Termin 12, 15. Mai 2014 Dr. Matthias Stürmer und Prof. Dr. Thomas Myrach Universität Bern, Institut für Wirtschaftsinformatik Abteilung Informationsmanagement Forschungsstelle Digitale Nachhaltigkeit
  • 2. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 2 12: Datenaktualiserung und Transitionen, Programming Coaching Donnerstag, 15. Mai 2014 > Buch „Interactive Data Visualization for the Web“ Kapitel 9: Updates, Transitions, and Motion > Links: http://chimera.labs.oreilly.com/books/1230000000345/ch09.html http://examples.oreilly.com/0636920026938/chapter_09/ > Datenaktualisierung, Transitionen Programming Coaching im zweiten Teil der Vorlesung: > Khôi Tran, Open Data App Entwickler
  • 3. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 3 Agenda 1. Evaluation, App-Reminder, Nacht der Forschung, Masterarbeiten 2. Datenaktualisierung und Transitionen
  • 4. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 4 Gesamtevaluation
  • 5. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 5 Vermittlung des Themas
  • 6. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 6 Engagement der Lehrperson
  • 7. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 7 Schwierigkeitsgrad und Umfang
  • 8. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 8 Globale Veranstaltungsbeurteilung
  • 9. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 9 Fachkompetenz des Dozenten
  • 10. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 10 Vermittlungskompetenz des Dozenten
  • 11. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 11 Engagement der Studierenden
  • 12. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 12 Engagement der Studierenden
  • 13. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 13 Hauptstudium
  • 14. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 14 Semester, Geschlecht
  • 15. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 15 Kommentare > Was fanden Sie an dieser Veranstaltung besonders gut? — Engagierter Dozent — Praktischer Bezug, Programmieren einer App — Gastvorträge — Podcast; Abwechslung durch Gastreferenten — Der praktische Bezug. Der Sinn. Der Inhalt. Der Dozent. Sehr schöne Idee, macht Riesenspass. Deshalb gebe ich so gute Note, obwohl Kreuze was anderes erwarten lassen würden. — Neues aktuelles Thema, Praxisbezug, Arbeit mit Externen (Daten Coaches); Gastvorträge eine gute Idee, Motivation und Unterstützung durch Dozent und andere Personen — Praxisbezogenes Arbeiten — Gute Betreuung, angenehme Umgangsformen; Buch gibt eine gute und verständliche Einführung für Programmier-Analphabeten — Die Aktualität der Unterlagen und des Stoffs. (Eine Seltenheit)
  • 16. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 16 Kommentare > Was fanden Sie an dieser Veranstaltung besonders gut? — Freundlicher Dozent; versucht den Studierenden zu helfen und Wissen zu vermitteln — Gastreferate waren sehr spannend; Projekt ist super, braucht jedoch viel Wissen in JavaScript/HTML; Dozent gibt sich Mühe und das merkt man -> sympathisch. — Die Veranstaltung zu Beginn hat mir sehr gut gefallen. Ich hatte einen guten Einblick ins Open Data und die meisten Gastvorträge waren sehr interessant. Auch war ich sehr froh um die zur Verfügung gestellten Podcasts. — Matthias unterrichtet engagiert — Beispiele aus der Praxis (externe Vorträge); Podcast — Die Idee der Veranstaltung ist super! Sehr interessant und aktuell! — Einführung in die Programmieren, Geschwindigkeit angemessen für nicht Erfahrene, Buch sehr gut
  • 17. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 17 Kommentare > Was fanden Sie an dieser Veranstaltung besonders gut? — Experten — Zusammenarbeit mit den Data Coaches; Die Freiheit selbst nach Wunsch zu programmieren; Die Hilfe nach der Vorlesung Probleme zu beseitigen — Praktische Arbeit, Interdisziplinarität — Man kann sicher viele neue Sachen lernen, da wir sonst keine vergleichbare Veranstaltung haben. Praktisches Arbeiten finde ich gut. — App erstellen -> sehr konkret; Buch exakt zum Thema, guter Einstieg ins Programmieren — Der praktische Teil; Gastvorträge — Viele Gastvorträge — Die Vorlesung an sich und die Thematik sind sehr interessant. Herr Stürmers Engagement is sehr gut — Ich finde toll, dass man etwas Praktisches entwickeln kann
  • 18. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 18 Kommentare > Was fanden Sie an dieser Veranstaltung besonders schlecht? — Oft is in den Folien der Gastreferenten nicht klar, was wichtig für die Prüfung ist; Zeitmanagement — Zeitliche Annahmen der Themen — Vorlesung wirkte bis jetzt etwas unstrukturiert — Theorievorlesung zu umfangreich! Mehr Zeit für App-Entwicklung wäre besser — Für BWL Bachelor Studenten ist die Vorlesung viel zu anspruchsvoll und es ist kaum möglich der Veranstaltung zu folgen (2. Teil der Vorlesung) ohne Daheim extrem viel zu investieren. Es kommt mir nicht gerecht vor. — Das benötigte Vorwissen ist recht hoch. Wer noch nie programmiert hat kann unmöglich folgen. — Es geht (für mich) in erster Linie um Programmierung. Theorie zu Open Data ist viel zu umfangreich. Zeitplanung: 1. Grundlagen D3 anschliessend 2. Open Data Theorie
  • 19. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 19 Kommentare > Was fanden Sie an dieser Veranstaltung besonders schlecht? — Für die Programmieraufgabe steht zu wenig Zeit zur Verfügung (45h in der Hälfte des Semesters) — Unterschied zwischen Basics in Programmieren und Programmieren einer komplexen App in wenigen Wochen viel zu hoch! -> für mich nicht erfolgreich — Zu spät ins Programmieren eingestiegen — Qualität der Gastvorträge war zum Teil nicht überzeugend; "Zeitverschwendung" durch nebensächliche Theorie, anstatt direkt mit den zentralen Aspekten (Programmieren der App und Wissen davon) zu beginnen; Theorie an sich gut (für programmieren), aber 1:1 vom Buch ; eventuell von Anfang an lesen; das Buch angeben [?] — Zumutung dass BWL-Studenten in so kurzer Zeit eine Programmiersprache erlernen können — Ich habe immer noch das Gefühl, dass von uns zu viel erwartet wird, was das Programmieren betrifft.
  • 20. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 20 Kommentare > Was fanden Sie an dieser Veranstaltung besonders schlecht? — Programmierung hätte früher Teil der Vorlesung sein können. — Data Coaches wussten bei der Präsentation teils nicht wirklich was von den Studenten gefordert ist (jemand wollte eine iPhone App) — Eigentlich wären ja keine Programmierkenntnisse vorausgesetzt. Da ich über ein minimes Basiswissen verfüge, verstand ich zwar, wovon gesprochen wurde. Das Meiste musst ich mir aber selber erarbeiten bzw. nachholen, da ich zunächst völlig überfordert war und nur Bahnhof verstand. Dass man nicht von Anfang an wusste, welches Fachwissen in der Vorlesung gefordert wird und erst von den Anforderungen des Programmierens erfuhr, als man sich schon definitiv dafür entschieden hat, fand ich nicht fair. Zumal der grösste Teil der Studierenden gemäss meiner Beobachtung enorme Programmierkenntnisse besitzen. — Man hätte zuerst eine Einführung in den praktischen Teil geben sollen (Bottom up)
  • 21. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 21 Kommentare > Was fanden Sie an dieser Veranstaltung besonders schlecht? — Das Niveau von Informatikern und BWLer is sehr unausgeglichen. Der Aufwand ist sehr unterschiedlich. Ich finde die App nimmt schon sehr viel Zeit in Anspruch, Prüfung sollte weggelassen werden. — Aus meiner Sicht ist der Stoff zu umfangreich für eine 4.5 ECTS Veranstaltung — Time Management der Vorlesung — Redner der Gastvorträge waren oft sehr schlecht vorbereitet. Teilweise wusste man nicht einmal was vermittelt werden sollte. HTML, CSS und JavaScript Einführung war sehr oberflächlich.
  • 22. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 22 Kommentare > Haben Sie Anregungen zur Verbesserung? — Ziele deutlicher formulieren — Früher mit praktischem Teil beginnen — Zeitplan überarbeiten. Gewisse Inputs sind später interessanter, da Open Data & Co. dann klarer verstanden wird. — Bei der Veranstaltungsausschreibung sollten sowohl geringe Programmierkenntnisse als auch ein Verständnis für Datenbanken als Voraussetzung angegeben werden. — Die Reihenfolge ist problematisch. Wenn wir zuerst langsamer ins Programmieren einsteigen würden, hätten wir bereits viel mehr Vorwissen [?] — Beim nächsten Mal würde ich die Einführung ins Programmieren zu Beginn machen und vielleicht sogar zusätzliche Übungslektionen anbieten — In Zukunft sollten nur Studierende mit Programmierkenntnissen daran teilnehmen dürfen.
  • 23. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 23 Kommentare > Haben Sie Anregungen zur Verbesserung? — Folien dürften weniger überladen sein. — Weniger Stoff (Schwerpunkte setzen: weniger Theori/Gastvorträge und viel Programmieren oder umgekehrt) — Man könnte von Beginn an mit dem Programmieren anfangen und nicht erst in Woche 7 wo man es anwenden sollte. — App-Programmierung sollte früher begonnen werden. Die Theorie- Hälfte über Open Data könnte nach einer Einführung in der zweiten Hälfte des Semesters gemacht werden, damit man länger Zeit hat für die Apps. — Vielleicht kleines Vorprojekt zum einarbeiten. — Umstrukturierung der Vorlesung -> praxisrelevante Vorlesungen am Anfang des Semesters — Wenig umfangreiche Schlussprüfung, da App-Entwickung viel Aufwand erforderte
  • 24. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 24 Kommentare > Haben Sie Anregungen zur Verbesserung? — Podcasts nicht deutlich aufgenommen — Programmierteil am Anfang und dann erst "Infoveranstaltungen" (Gastreferate) — Es ist schwierig den HTML-Text einer bereits bestehenden Applikation (kopiert aus D3-Bibliothek) zu verstehen und allfällige Ungereimtheiten mit eigenen Daten zu ... [?] — Mehr Zeit für praktischen Teil. — Allgemeine Theorie (erster Teil) ist eigentlich nicht so relevant -> kürzer halten; Prüfung notwendig? — Direkt mit der App beginnen, da die Zeit eh knapp ist und dies der zentrale Aspekt der Vorlesung ist. — In der Kursbeschreibung "erste Programmiererfahrungen" voraussetzen — Oder neuen Kurs "Einführung in D3" nur für BWL-Studenten ohne Informatiker -> nicht mischen
  • 25. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 25 Kommentare > Haben Sie Anregungen zur Verbesserung? — Programmiereinführung kam viel zu spät. Der Aufwand staut sich am Ende der Vorlesung auf. Prüfung am Ende wäre nicht zusätzlich notwendig. — Klarer zeigen was ein Student am Ende fähig ist zu erzeugen — App statt Prüfung — Statt jede Stunde einen Gastvortrag könnte man früher mit dem Hacking beginnen -> würde etwas Zeitdruck nehmen, z.B. erste Lektion Open Data Theorie und zweite Lektion programmieren — Grundsatztheorie zur Programmierung der App sollte früher in der Vorlesung vermittelt werden. Die Gastvorträge können auch am Schluss der Vorlesung kommen. — Theorie Open Data um 50% senken. Zuerst Programmiereinführung und anschliessend nach und nach Theorie dazu. — Ich würde die Veranstaltung in zwei Vorlesungen teilen: 1. Theoretische Aspekte von Open Data, 2. Programmierung und App Entwicklung
  • 26. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 26 Reminder zur App-Präsentation
  • 27. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 27 Infos zur Open Data App > Kurzpräsentation in der Vorlesung vom Donnerstag, 22. Mai 2014 ist Voraussetzung für Anrechnung und Note. Mindestens eine Person muss anwesend sein. App zählt 50% der Note, Prüfung zählt 50% der Note. > Minimalanforderungen an die App (für Note "genügend"): 1. Neue Daten aufbereiten und visualisieren (Data Coach, Datenportal, eigene Daten) 2. Mindestens eine kreative Visualisierung, nicht bloss Balken oder Kuchendiagramm 3. Mindestens eine interaktive Funktion (Hover, Mouse Click, Scroll Wheel, Button etc.) 4. Aufwand von rund 40 bis 50 Stunden pro Person muss erkennbar sein > Bewertungskriterien: 1. Komplexität: Wie anspruchsvoll sind die visualisierten Daten und der behandelte Themenkomplex als ganzes? 2. Kreativität: Wie neuartig und attraktiv sind die Visualisierung der Daten und technische Implementierung der Open Data App? 3. Umsetzung: Wie benutzerfreundlich, verständlich und gut dokumentiert ist die Open Data App? 4. Impact: Wie hoch ist die Bedeutung und die Aussagekraft der Datenvisualisierung und der Open Data App als gesamtes?
  • 28. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 28 Vorgehen Präsentationen Open Data App > Folien zu den 5 Punkten: 1. Team (wer, welchen Hintergrund, Foto) 2. Ziel, Motivation (Aufgabestellung) 3. Resultat (mit öffentlich zugänglichem Link) 4. Datenquellen (Ursprungsformat, Endformat) 5. Vorgehen (notwendige Schritte) > Kurze Live App-Demo > Zeitvorgabe: maximal 4 Minuten! (je nach Anzahl Apps mehr) > Anmeldung für Kurzpräsentation: Mail an Rahel Winkelmann rahel.winkelmann@iwi.unibe.ch bis 20. Mai 2014 mit den Folien als PowerPoint oder PDF
  • 29. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 29 Jury > Bis jetzt angemeldete Jury-Mitglieder: 1. André Golliez, Präsident Opendata.ch 2. Juan Pablo Lovato, Projektleiter OGD, Bundesverwaltung 3. Julian Schmidli, Datenjournalist SonntagsZeitung 4. Michael Erne, Smartvote 5. Daniel Studer, Statistik Kanton Bern 6. Bora Günaydin, CEO Montemedia 7. Khôi Tran, Open Data Entwickler am IWI > Finale Benotung durch Thomas Myrach und Matthias Stürmer > Geeignete Apps werden im Tagesanzeiger-Datenblog vorgestellt: http://blog.tagesanzeiger.ch/datenblog/
  • 30. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 30 Universität Bern – Nacht der Forschung
  • 31. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 31 Nacht der Forschung der Uni Bern > Samstag, 6. September 2014 16 Uhr bis 23 Uhr > 2012 kamen rund 7000 Besuchende > Open Data Hacknight: — Den Besuchenden die Apps aus der Vorlesung vorstellen — Zusammen mit anderen Open Data ProgrammiererInnen an den Apps weiterentwickeln — App-Ideen der Besuchenden versuchen umzusetzen > Bitte bei Matthias Stürmer anmelden: matthias.stuermer@iwi.unibe.ch
  • 32. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 32 Masterarbeiten zu Open Government Data
  • 33. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 33 Gebührenpolitik > Masterarbeit bezüglich Analyse der Gebührenauswirkungen von Open Government Data: — Analyse der heutigen Gebühren — Überblick über die gesetzlichen Rahmenbedingungen — Darstellen der Geschäftsmodelle > Weitere Infos: — Interdisziplinäre Masterarbeit ab sofort, Betreuung Matthias Stürmer — In Zusammenarbeit mit Geschäftsstelle E-Government Schweiz, BVerw. — Möglicherweis wird temporärer Arbeitsplatz innerhalb der Bundesverwaltung zur Verfügung gestellt — Detaillierte Ausschreibung: http://www.iwi.unibe.ch/content/studium/bachelor__und_masterarbeiten/themenvorschlaege_master/index_ger.html
  • 34. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 34 Weitere Masterarbeit-Themen > Welche Behördendaten sind ideale Open Government Data Kandidaten? — Anwendung KDZ Open-Government-Vorgehensmodell bezüglich Datenmonitoring — Priorisierung der Datensätze > Was ist das wirtschaftliche Potential von Open Government Data in der Schweiz? — Volkswirtschaftliche Aspekte — Basierend auf bestehenden Studien > Wie kann bei Behörden eine Kultur von Open Data gefördert werden? — Ownership von Daten — Wandel bezüglich Ort wo die Stellen und Personen ihre Daten ablegen
  • 35. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 35 Agenda 1. Evaluation, App-Reminder, Nacht der Forschung, Masterarbeiten 2. Datenaktualisierung und Transitionen
  • 36. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 36 Updating Data > The simplest kind of update is when all data values are updated at the same time and the number of values stays the same. 1. Modify the values in your dataset. 2. Rebind the new values to the existing elements (thereby overwriting the original values). 3. Set new attribute values as needed to update the visual display. > Before any of those steps can happen, though, some event needs to kick things off. > We will need a “trigger,” something that happens after page load to apply the updates. How about a mouse click?
  • 37. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 37 Interaction via Event Listeners The listener listens for a click event occurring on our selection p. When that happens, the listener function is executed: d3.select("p") .on("click", function() { //Do something mundane and annoying on click alert("Hey, don't click that!"); });
  • 38. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 38 Changing the Data Update dataset by overwriting its original values: //On click, update with new data d3.select("p") .on("click", function() { //New values for dataset dataset = [ 11, 12, 15, 20, 18, 17, 16, 18, 23, 25, 5, 10, 13, 19, 21, 25, 22, 18, 15, 13 ]; //Update all rects svg.selectAll("rect") .data(dataset) .attr("y", function(d) { return h - yScale(d); }) .attr("height", function(d) { return yScale(d); }); }); The rects can maintain their horizontal positions and widths; all we really need to update are their heights and y positions. Link
  • 39. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 39 Fixing Labels and Colors We forgot to update the bar colors. Fix it by copy-paste from above: .attr("fill", function(d) { return "rgb(0, 0, " + (d * 10) + ")"; }); And we forgot to update the labels. Fix it by copy-paste from above: svg.selectAll("text") .data(dataset) .text(function(d) { return d; }) .attr("x", function(d, i) { return xScale(i) + xScale.rangeBand() / 2; }) .attr("y", function(d) { return h - yScale(d) + 14; }); Link
  • 40. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 40 Transitions > A transition is a special type of selection where the operators apply smoothly over time rather than instantaneously. > Transitions may have per-element delays and durations, computed using functions of data similar to other operators. > Why do transitions? To better explain your data! > For example, you can sort elements and then stagger the transition for better perception of element reordering during the transition: Heer and Robertson, 2007 > More examples Source: https://github.com/mbostock/d3/wiki/Transitions http://vis.berkeley.edu/papers/animated_transitions/
  • 41. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 41 Use transition() Insert transition() below where your selection is made, and above where any attribute changes are applied: //Update all rects svg.selectAll("rect") .data(dataset) .transition() // <-- This is new! .attr("y", function(d) { return h - yScale(d); }) .attr("height", function(d) { return yScale(d); }) .attr("fill", function(d) { return "rgb(0, 0, " + (d * 10) + ")"; }); Link
  • 42. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 42 About transition() > Without transition(), D3 evaluates every attr() statement immediately, so the changes in height and fill happen right away. > When you add transition(), D3 introduces the element of time. > Rather than applying new values all at once, D3 interpolates between the old values and the new values, meaning it normalizes the beginning and ending values, and calculates all their in- between states. > D3 is also smart enough to recognize and interpolate between different attribute value formats. > For example, if you specified a height of 200px to start but transition to just 100 (without the px). Or if a blue fill turns rgb(0,255,0). > You don’t need to fret about being consistent; D3 takes care of it.
  • 43. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 43 How to fine-tune transitions > Duration of a transition: .duration(1000) (in milliseconds) > Type of motion: .ease("VALUE") — cubic-in-out (default): produces gradual acceleration and deceleration — linear: there is no gradual acceleration and deceleration—the elements simply begin moving at an even pace, and then they stop abruptly. — circle: Gradual ease in and acceleration until elements snap into place. — elastic: The best way to describe this one is “sproingy.” [elastisch] — bounce: Like a ball bouncing, then coming to rest. > Short break: .delay(1000) (in milliseconds)
  • 44. FS 2014 Open Data > 12: Datenaktualiserung und Transitionen, Programming Coaching 44 This is the end! Jetzt letztes Programming Coaching, danach Feinschliff der App, bis 20. Mai Folien an Rahel, am 22. Mai Open Data App Präsentationen, am 5. Juni Prüfung

×