• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Chương 03 spss
 

Chương 03 spss

on

  • 403 views

 

Statistics

Views

Total Views
403
Views on SlideShare
403
Embed Views
0

Actions

Likes
0
Downloads
10
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Chương 03 spss Chương 03 spss Document Transcript

    • Phaân tích döõ lieäu baèng SPSS CHÖÔNG 6: XÖÕ LYÙ VAØ PHAÂN TÍCH DÖÕ LIEÄU1. Kieåm tra döõ lieäu (Explore)Coâng vieäc ñaàu tieân raát quan troïng vaø caàn phaûi thöïc hieän moät caùch caån thaäntröôùc khi ñi vaøo caùc böôùc moâ taû hay caùc phaân tích thoâng keâ phöùc taïp sau naøylaø tieán haønh xem xeùt döõ lieäu moät caùch caån thaän. SPSS cung caáp cho coâng cuïExplore ñeå xem xeùt vaø kieåm tra döõ lieäu: - Phaùt hieän caùc sai soùt - Nhaän daïng döõ lieäu ñeå tìm phöông phaùp phaân tích thích hôïp vaø chuaån bò cho vieäc kieåm tra giaû thuyeátÑeå nhaän daïng vaø phaùt hieän sai soùt trong döõ lieäu, ta coù ba caùch hieãn thò döõ lieäunhö sau - Bieåu ñoà Histogram - Sô ñoà caønh vaø laù Stem-and-leaf plot - Sô ñoà hoäp BoxplotÑeå öôùc löôïng caùc giaõ ñònh ñöôïc duøng cho vieäc kieåm nghieäm caùc giaû thuyeát, taduøng caùc pheùp kieåm tra sau: - Kieåm tra levene: Kieåm tra tính ñoàng ñeàu cuûa phöông sai - Kieåm tra K-S Lilliefors: Kieåm tra tính chuaån taéc cuûa toång theå, xem döõ lieäu coù ñöôïc laáy töø moät phaân boá chuaån hay khoângChuùng ta thöôøng duøng giaù trò trung bình soá hoïc ñeå öôùc löôïng ñoä hoäi tuï cuûa döõlieäu. Tuy nhieân vì giaù trò trung bình bò aûnh höôûng bôûi taát caû caùc giaù trò quansaùt. Ñeå giaûm thieåu nhöõng aûnh höôûng cuûa caùc giaù trò baát thöôøng (quaù lôùn hoaëcquaù beù), ngöôøi ta thöôøng loaïi boû caùc giaù trò lôùn nhaát vaø caùc giaù trò nhoû nhaát(Outliers) theo cuøng moät tyû leä naøo ñoù. Khi ñoù giaù trò trung bình ñöôïc goïi laø giaùtrò trung bình giaõn löôïc (Timmed-mean).Moät caùch laøm khaùc laø gaùn caùc troïng soá khaùc nhau cho caùc giaù trò quan saùt tuøytheo khoaûng caùch cuûa noù ñeán giaù trò trung bình, caøng xa troïng soá caøng nhoû.Caùc trong soá naøy goïi laø M-estimators. Coù 4 loaïi troïng soá laø Huber, Turkey,Hampel, vaø Andrew. Döïa vaøo troïng soá naøy ta öôùc löôïng laïi giaù trò trung bìnhcho döõ lieäu.Bieân soaïn: Ñaøo Hoaøi Nam 33
    • Phaân tích döõ lieäu baèng SPSSÑeå kieåm tra döõ lieäu, choïn treân menu Statistic/Summarize/Explore… ñeå môûhoäp thoaïi Explore nhö Hình 6-1: Hình 6-1Caùc bieán trong taäp döõ lieäu xuaát hieän trong hoäp beân traùi. Choïn moät hay nhieàubieán ñöa vaøo oâ Dependent list, caùc bieán caàn quan saùt seõ ñöôïc lieät keâ rong oânaøy. Chuùng ta cuõng coù theå taùch caùc quan saùt thaønh caùc nhoùm nhoû rieâng bieät ñeåkieåm tra döïa vaøo caùc giaù trò cuûa caùc bieán kieåm soaùt seõ ñöôïc ñöa vaøo oâ FactorList. Ví duï nhö kieåm tra bieán möùc ñoä ñaùnh giaù noùi chung döïa vaøo bieán nhaõnhieäu ñang söû duïng. Coù theå laàn ra caùc quan saùt naøy baèng caùch gaùn nhaõn cho noùbaèng gía trò cuûa moät bieán naøo ñoù, bieán naøy seõ ñöôïc ñöa vaøo trong oâ labelcases by. Ví duï muoán bieát nhöõng giaù trò di thöôøng trong bieán möùc ñoä ñaùnh giaùnoùi chung theo nhaõn hieäu TV ñang duøng. Ta gaùn nhaõn cho caùc quan saùt naøybaèng caùc giaù trò trong bieán soá baûng caâu hoûi. Luùc naøy neáu coù caùc giaù trò dòthöôøng ta deã daøng laàn ra noù baèng soá baûng caâu hoûi keøm theoOÂ Display, cho pheùp chuùng ta choïn caùch hieãn thò keát quaû, caùc tham soâ thoángkeâ (Statistic), hoaëc ñoà thò (Plot), SPSS maëc ñònh laø hieãn thò caû haiBieân soaïn: Ñaøo Hoaøi Nam 34
    • Phaân tích döõ lieäu baèng SPSSSöû duïng coâng cuï Statistics cho pheùp ta löïa choïn caùc thoáng keâ hieãn thò nhö hoäpthoaïi Hình 6-2: Hình 6-2 - Descriptives: Cho pheùp ta hieãn thò caùc giaù trò thoáng keâ nhö giaù trò trung bình, khoaûng tin caäy, trung vò, trung bình giaõn löôïc, giaù trò nhoû nhaát, lôùn nhaát, khoaûng bieán thieân, caùc baùch phaân vò - M-estimators: Hieãn thò caùc giaù trò trung bình theo 4 loaïi troïng soá - Outliers: Hieãn thò caùc quan saùt coù 5 giaù trò nhoû nhaát vaø 5 giaù trò lôùn nhaát, goïi laø Extreme Values - Percentiles: Hieån thò caùc giaù trí baùch vò phaânSöû duïng coâng cuï Plots (Hình 6-3), ñeå löïa choïn hieãn thò daïng ñoà thò(Histogram), bieåu ñoà chænh taéc, caùc pheùp kieåm tra veà phaân phoái chuaån, tínhñoàng ñeàu cuûa phöông sai Hình 6-3 - Boxplots: Ñieàu kieän ñeå hieãn thò cuûa Boxplots laø ta phaûi ñang quan saùt nhieàu hôn moät bieán phuï thuoäc (hieãn thò trong oâ dependent list).Bieân soaïn: Ñaøo Hoaøi Nam 35
    • Phaân tích döõ lieäu baèng SPSS o Factor levels together ñöa ra moät hieån thò rieâng bieät cho moãi bieán phuï thuoäc. Trong phaïm vi moät hieån thò, Boxplots ñöôïc hieån thò cho moãi moät nhoùm ñöôïc phaân ra theo giaù trò cuûa bieán ñieàu khieån (factor variable). Dependents together ñöa ra moät hieån thò rieâng bieät theo moãi nhoùm ñöôïc phaân theo caùc giaù trò trong bieán ñieàu khieån. Trong phaïm vi cuûa hieãn thò, boxplots ñöôïc ñöa ra laàn löôït cho moãi bieán phuï thuoäc - Descriptive: Cho pheùp löïa choïn hieån thò daïng ñoà thò Histogram hay daïng caønh laù (stem-and-leaf plots) - Normality plots with tests. Ñöa ra caùc daïng ñoà thò veà phaân phoái chuaån. Ñoàng thôøi cung caáp moät kieåm nghieäm thoáng keâ Kolmogorov-Smirnov statistic, vôùi möùc tin caäy Lilliefors duøng ñeå kieåm nghieän tính chuaån cuûa phaân phoái maãu ñang quan saùt. Moät kieåm nghieäm khaùc laø thoáng keâ Shapiro-Wilk ñöôïc söû duïng cho maãu coù kích côû nhoû hôn hoaëc baèng 50 maãu. - Spread vs. Level with Levene Test. Cho pheùp chuùng ta kieåm tra tính ñoàng ñeàu cuûa phöông sai giöõa caùc maãu trong döõ lieäu goác hay döõ lieäu ñaõ ñöôïc bieán ñoåi. Ñeå thöïc hieän pheùp thoáng keâ Levene ñoøi hoûi phaûi coù khai baùo bieán ñieàu khieån trong khuoân Factor lists, Thoàng thöôøng ta thöôøng laøm vieäc treân döõ lieäu goác do ñoù löïa choïn Untransformed trong khung Spread vs Level with Levene test Kieåm nghieäm Kolmogorov-Smirnov (Lilliefors) Kieåm nghieäm Lilliefors laø moät daïng kieåm nghieäm Kolmogorov-Smirnov, duøng ñeå kieåm nghieäm tính chuaån taéc cuûa moät maãu hay hai maãu. Vôùi giaù trò sig. nhoû hôn möùc yù nghóa (0.05) laø keát quaû baùc boû giaû thuyeát phaân phoái maãu laø phaân phoái chuaån. Pheùp kieåm nghieäp Shapiro-Wilk chæ duøng trong nhöõng tröôøng hôïp soá maãu nhoû hôn 40. Kieåm nghieäm Levene Tröôùc khi ñi vaøo caùc kieåm nghieäm trung bình ta caàn phaûi tham khaûo moät kieåm nghieäm khaùc maø keát quaû cuûa noù laø raát quan troïng cho caùc kieåm nghieäm trung bình sau naøy. Kieåm nghieäm Levene laø pheùp kieåm nghieäm tính ñoàng nhaát cuûa phöông sai. ÔÛ ñaây ta kieåm nghieäm giaû thuyeát cho raèng phöông sai cuûa giöõa caùc maãu quan saùt laø baèng nhau. Kieåm nghieäm cho ta keát quaû Sig. nhoû hôn möùc tin caäy (5%) ta keát luaän khoâng chaáp nhaän giaû thuyeát cho raèng phöông sai maãu thì baèng nhau. Chuù yù trong moät soá kieåm nghieäm nhö ANOVA, kieåm nghieäm t, … Ñoøi hoûi phaûi kieåm nghieäm thoâng keâ Levene tröôùc ñeå xaùc ñònh tinh caân baèng hay khoâng caân baèng cuûa caùc phöông sai maãu. Keát quaû naøy seõ aûnh höôûng ñeán vieäc löïa choïn caùc kieåmBieân soaïn: Ñaøo Hoaøi Nam 36
    • Phaân tích döõ lieäu baèng SPSS nghieäm trung bình khaùc (Kieåm nghieäp trung bình vôùi phöông sai maãu baèng nhau hoaëc kieåm nghieäm trung bình vôùi phöông sai maãu khoâng baèng nhau)2. Laäp baûng phaân boá taàn suaát cho bieán moät traû lôøi (Frequencies)Coâng cuï Frequencies söû duïng caùc tham soá thoáng keâ ñeå moâ taû cho nhieàu loaïibieán, ñaây cuõng laø moät coâng cuï höõu ích ñeå ta khaûo saùt döõ lieäu tìm loãi cho döõlieäu.Chuùng ta coù theå khaûo saùt döõ lieäu thoâng qua caùc coâng cuï nhö: Taàn suaát xuaáthieän, phaàn traêm, phaàn traêm tích luõy. Ngoaøi ra noù coøn cung caáp cho ta caùc pheùpño löôøng thoâng keâ nhö ñoä taäp trung (central tendency measurement), ñoä phaântaùn (dispersion), töù phaân vò (Quartiles) vaø caùc baùch phaân vò (percentiles), phaânphoái döõ lieäu (distribution).Laäp baûng naøy ngoaøi vieäc toùm taét döõ lieäu, noù coøn giuùp ta phaùt hieän nhöõng saisoùt trong döõ lieäu nhö, nhöõng giaù trò baát thöôøng (quaù lôùn hay quaù nhoû) coù theålaøm sai leäch keát quaû phaân tích thoáng keâ, nhöõng giaù trò maõ hoùa baát thöôøng dosai soùt vieäc nhaäp lieäu hay maõ hoùaÑeå tieán haønh laäp baûng ñôn ta choïn coâng cuï Statistic/sumarize/frequencies tacoù hoäp thoaïi nhö Hình 6-4: Hình 6-4Bieân soaïn: Ñaøo Hoaøi Nam 37
    • Phaân tích döõ lieäu baèng SPSSChuyeån bieán caàn moâ taû sang hoäp thoaïi variable(s, ta coù theå löïa choïn nhieàubieán caàn quan saùt cuøng moät luùc.Coâng cuï Charts ñöôïc duøng ñeå veõ ñoà thò cho döõ lieäu, vaø coâng cuï Format ñöôïcsöû duïng ñònh ra kieåu hieån thò cuûa döõ lieäu, theo thöù töï taêng daàn hoaëc giaõm daàn.Coâng cuï statistics ñeå truy suaát hoäp thoaïi nhö Hình 6-5. Trong hoäp thoaïistatistics naøy seõ bao goàm caùc coâng cuï ñeå ño löôøng caùc giaù trò thoáng keâ cuûa döõlieäu nhö vò trí töông ñoái cuûa caùc nhoùm giaù trò hay coøn goïi laø caùc phaân vò, maätñoä taäp trung vaø phaân taùn cuûa döõ lieäu, nhöõng ñaëc tính veà phaân phoái cuûa döõ lieäu(Distribution) Hình 6-5 - Giaù trò baùch phaân vò (percentile values): Ñöôïc duøng ñeå xaùc ñònh caùc ranh giôùi töông ñoái cuûa caùc nhoùm töø maãu quan saùt, ñieàu löu yù laø döõ lieäu caàn quan saùt ñaõ ñöôïc xaép xeáp thep thöù töï töø thaáp ñeán cao. o Ta coù coâng cuï phaân nhaùnh döõ lieäu thaønh 4 phaàn baèng nhau goïi laø töù phaân vò (quartiles). o Hoaëc ta coù theå chia döõ lieäu theo caùc phaàn baèng nhau cuï theå baèng caùch goõ soá phaàn muoán chia vaøo coâng cuï cuts points for equal groups. o Hoaëc ta coù theå xem giaù trò ôû phaân nhaùnh cuï theå naøo ñoù töø coâng cuï percentile(s). Söû duïng thanh Add ñeå xaùc nhaän soá thöù töï phaân vò caàn quan saùt, söû duïng thanh Remove vaø Change ñeå loaïi boû hoaëc thay ñoåi söï xaùc nhaän ban ñaàu. Ví duï nhö ñoái vôùi bieán chöùa caùc caâu traû lôøi tröïc tieáp veà soá tuoåi cuûa ngöôøi traû lôøi trong moät cuoäc khaûo saùt daân soá (tuoåi ngöôøi traû lôøi ñöôïc ghi tröïc tieáp töø 18 – 89 tuoåi) ta coù theå duøng coâng cuï phaân vò döõ lieäu ñeå phaânBieân soaïn: Ñaøo Hoaøi Nam 38
    • Phaân tích döõ lieäu baèng SPSS caùc ñoä tuoåi naøy thaønh caùc nhoùm nhoû, ví duï nhö ta phaân caùc ñoä tuoåi naøy baèng phöông phaùp töù phaân vò (quartiles). Luùc ñoù tuoåi cuûa ngöôøi traû lôøi seõ ñöôïc phaân thaønh 4 phaàn sao cho moãi nhoùm tuoåi ñöôïc phaân chieám 25% soá laàn xuaát hieän (taàn suaát xuaát hieän). - Ñaëc tính phaân phoái (Distribution): Coù hai ñaïi löôïng ño löôøng nhöõng ñaëc tính cuûa söï phaân phoái döõ lieäu laø (1) Heä soá ñoái xöùng Skewness (Cs) cho ta bieát daïng phaân phoái cuûa caùc giaù trò quan saùt Standard Error of Skewness coù theå ñöôïc söû duïng ñeå kieåm nghieäm tính phaân phoái chuaån. Moät phaân phoái Skewness khoâng ñöôïc xem laø phaân phoái chuaån khi Statndard error cuûa noù nhoû hôn –2 hoaëc lôùn hôn 2. Moät giaù trò döông lôùn cuûa Statndard error cho thaáy nhaùnh cuûa phaân phoái naøy daøi qua beân phaûi vaø ngöôïc laïi moät trò aâm chæ ra nhaùnh cuûa phaân phoái naøy daøi qua beân traùi - Cs = 0: Caùc quan saùt ñöôïc phaân phoái moät caùc ñoái xöùng xung quanh giaù trò trung bình - Cs > 0: Caùc quan saùt taäp trung chuû yeáu vaøo caùc giaù trò nhoû nhaát - Cs < 0: Caùc quan saùt taäp trung chuû yeáu vaøo caùc giaù trò lôùn nhaát (2) Heä soá taäp trung Kurtosis (Cc) duøng ñeå so saùnh ñöôøng cong quan saùt vôùi daïng ñöôøng cong phaân phoái chuaån. Standard Error of Kurtosis coù theå ñöôïc söû duïng ñeå kieåm nghieäm tính phaân phoái chuaån. Moät phaân phoái Kurtosis khoâng ñöôïc xem laø phaân phoái chuaån khi Statndard error cuûa noù nhoû hôn –2 hoaëc lôùn hôn 2. Moät giaù trò döông lôùn cuûa Statndard error cho ta bieát hai nhaùnh cuûa phaân phoái naøy daøi hôn nhaùnh cuûa phaân phoái chuaån vaø ngöôïc laïi moät trò aâm chæ ra hai nhaùnh cuûa phaân phoái ngaén hôn phaân phoái chuaàn - Cc > 0: Cho thaáy xu höôùng taïp trung maïnh cuûa caùc quan saùt xung quanh giaù trò trung bình - Cc < 0: Cho thaáy ñöôøng cong coù daïng heïp hôn.Bieân soaïn: Ñaøo Hoaøi Nam 39
    • Phaân tích döõ lieäu baèng SPSS3. Laäp baûng moâ taû (Descriptive)Söû duïng StatistictsSummariesDescriptives ñeå môû hoäp thoaïi moâ taû thoáng keânhö Hình 6-6: Hình 6-6Ñaây laø moät daïng coâng cuï khaùc coù theå ñöôïc duøng ñeå toùm taéc döõ lieäu vaø chæ chopheùp thao taùc treân daïng döõ lieäu ñònh löôïng (thang ño khoaûng caùch vaø tyû leä).Ñöôïc duøng ñeå theå hieän xu höôùng taäp trung cuûa döõ lieäu (central tendency)thoâng qua giaù trò trung bình cuûa caùc giaù trò trong bieán (mean), vaø moâ taû söïphaân taùn cuûa döõ lieäu thoâng qua phöông sai vaø ñoä leäch chuaån. Chuyeån caùc bieáncaàn toùm taéc vaøo hoäp thoaïi variables vaø nhaáp thanh options ñeå löïa choïn caùcthoâng soá thoáng keâ caàn moâ taû, nhö giaù trò trung bình–mean, giaù trò toái thieåu, giaùtrò toái ña, phöông sai vaø ñoä leäch chuaån,… (Hình 6-7) Hình 6-74. Laäp baûng nhieàu chieàu cho caùc bieán moät traû lôøi (Crosstabs)Bieân soaïn: Ñaøo Hoaøi Nam 40
    • Phaân tích döõ lieäu baèng SPSSBaûng nhieàu chieàu laø daïng baûng cheùo theå hieän taàn suaát xuaát hieän cuûa moät bieánnaøy trong moái quan heä vôùi moät hay nhieàu bieán khaùc. Baûng cheùo coøn cung caápnhieàu loaïi kieåm nghieäm thoáng keâ vaø ño löôøng moái quan heä vaø töông quan giöõacaùc bieán trong baûng. Caáu truùc cuûa baûng vaø loaïi döõ lieäu (loaïi thang ñoù) seõquyeát ñònh loaïi coâng cuï naøo ñöôïc söû duïng ñeå ño löôøng. Ngoaøi vieäc theå hieänmoái lieân heä giöõa caùc bieán. Baûng nhieàu chieàu coøn giuùp ta phaùt hieän nhöõng saisoùt trong döõ lieäu töø vieäc phaùt hieän ra nhöõng moái quan heä voâ lyù vaø baát thöôønggiöõa hai bieán. Choïn treân menu Statistics/Summaries/Crosstabs ñeå môû hoäpthoaïi nhö Hình 6-8: Hình 6-8Caùc bieán trong taäp döõ lieäu ñöôïc hieån thò beân hoäp beân traùi. Choïn caùc bieán haøngñöa vaùo hoäp Row(s) vaø caùc bieán coät ñöa vaøo hoäp Column(s). Thoâng thöôøngbieán phuï thuoäc hay bieán caàn quan saùt thöôøng ñöôïc ñöa vaø haøng (rows) vaø bieánñoäc laäp hay bieán kieåm soaùt ñöôïc ñöa vaø coät (columns). Vieäc löïa choïn caùcphaân tích theo caùc tyû leä phaàn traêm, %row vaø %column cuõng nhö %total tuyøthuoäc vaøo yeâu caàu nghieân cöùu.Ngoaøi ra, chuùng ta coù theå ñöa theâm vaøo baûng cheùo caùc lôùp bieán ñieàu khieån(layer) ñeå taïo ra caùc baûng bieán cheùo nhieàu chieàu. Moãi baûng cheùo rieâng bieät seõñöôïc taïo ra öùng vôùi moãi giaù trò cuûa moãi bieán ñieàu khieån. Moãi lôùp ñieàu khieånseõ chia baûng cheùo thaønh nhieàu nhoùm nhoû hôn. Coù theå theâm toái ña 8 bieán ñieàukhieån, duøng caùc thanh Next vaø previous ñeå di chuyeån giöõa caùc bieán ñieàu khieånnaøy. Vieäc ñöa vaøo caùc bieán ñieàu khieån naøy cho pheùp ta xem xeùt caùc moái quanheä maø luùc ban ñaàu khoâng theå thaáy ngay. Caùc coâng cuï thoáng keâ seõ cho ra caùckeát quaû rieâng bieát ñoái vôùi töøng giaù trò cuûa bieán ñieàu khieån.Bieân soaïn: Ñaøo Hoaøi Nam 41
    • Phaân tích döõ lieäu baèng SPSSCoâng cuï Cells trong hoäp thoaïi cho pheùp ta tính toaùn caùc heä soá ño löôøng moáiquan heä giöõa caùc bieán ñoù nhö % haøng, % coät, % Total.Coâng cuï Exact cung caáp cho chuùng ta hai phöông phaùp ñeå tính ra möùc ñoä tincaäy cho caùc pheùp kieåm nghieäm söû duïng trong baûng cheùo, hoaëc caùc pheùp thöûphi tham soá (nonparametric). Hai phöông phaùp naøy bao goàm phöông phaùpExact vaø phöông phaùp Monte Carlo ñöôïc söû duïng nhö coâng cuï ñeå thu ñöôïcnhöõng keát quaû chính xaùc trong tröôøng hôïp döõ lieäu cuûa chuùng ta khoâng ñaùp öùngñöôïc nhöõng giaû thuyeát caàn thieát cho moät keát quaû ñaùng tin caäy khi söû duïngphöông phaùp tieäm caän tieâu chuaån (Standard asymptonic) phöông phaùp maø keømtheo noù döõ lieäu cuûa chuùng ta ñoøi hoûi phaûi thoaû maõn nhöõng ñieàu kieän sau: - Döõ lieäu söû duïng coù phaân phoái chuaån, hoaëc kích côû maãu phaûi ñuû lôùn (n>=30) - Khoâng toàn taïi taàn suaát mong muoán naøo cuûa baát kyø giaù trò naøo trong baûng cheùo nhoû hôn 5.Ñoái vôùi tröôøng hôïp döõ lieäu khoâng gaëp ñöôïc nhöõng yeâu caàu nhö treân. Phöôngphaùp exact hoaëc Monte Carlo veà ñoä tin caäy luoân luoân cho ta keát quaû ñaùng tincaäy maø khoâng caàn quan taâm ñeán kích côû maãu, phaân phoái cuûa caùc quan saùtcuõng nhö söï caân baèng cuûa döõ lieäu (caân baèng veà soá löôïng caùc giaù trò khaùc nhautrong bieán). Choïn coâng cuï Exact trong hoäp thoaïi Crosstabs ta coù hoäp thoaïi connhö Hình 6-9. Hình 6-9SPSS maëc ñònh laø söû duïng phöông phaùp tieäm caän thoâng thöôøng (Asymptotic).Neáu ta söû duïng phöông phaùp exact hoaëc mote carlo ñeå xaùc ñònh tính ñoä tin caäythì caàn chuù yù caùc ñieåm sau: - Neáu ta löïa choïn phöông phaùp Monte Carlo, goû khoaûng tin caäy mong muoán vaøo coâng cuï Confidence level, ñoàng thôøi cho bieát kích côû maãu ñöôïc söõ duïng. Söû duïng phöông phaùp cho ta keát quaû nhanh hôn phöông phaùp exactBieân soaïn: Ñaøo Hoaøi Nam 42
    • Phaân tích döõ lieäu baèng SPSS - Neáu löïa choïn phöông phaùp Exact, nhaäp vaøo thôøi gian giôùi haïn toái ña cho vieäc tính toaùn cho moãi pheùp thöû. Neáu moät pheùp kieåm nghieäm vöôït quaù thôøi gian giôùi haïn toái ña 30 phuùt, caùch toát hôn neân söû duïng laø Moten CarloCoâng cuï Statistics cho pheùp ta tính caùc kieåm nghieäm giaû thuyeát veà tính ñoäc laäpcuûa caùc bieán, vaø moái lieân heä giöõa caùc caùc bieán, heä soá töông quan, cuõng nhö ñolöôøng caùc moái quan heä ñoù. (Xem Hình 6-10) Hình 6-10 Caùc kieåm nghieäm thoáng keâ – kieåm nghieäm moái quan heä vaø töông quan giöõa caùc bieán söû duïng trong baûng cheùo Kieåm nghieäp Chi-square: - Laø moät coâng cuï thoâng keâ söû duïng ñeå kieåm nghieäp giaû thuyeát cho raèng caùc bieán trong haøng vaø coät thì ñoäc laäp vôùi nhau (H0). Phöông phaùp kieåm nghieäm naøy chæ cho ta bieát ñöôïc lieäu moät bieán naøy coù quan heä hay khoâng vôùi moät bieán khaùc, tuy nhieân phöông phaùp kieåm nghieäp naøy khoâng chæ ra cöôøng ñoä cuûa moái quan heä giöõa hai bieán maïnh hay yeáu (neáu coù quan heä), cuõng nhö khoâng chæ ra höôùng thuaän hay nghòch cuûa moái quan heä naøy (neáu coù quan heä). - Ñeå kieåm nghieäp tính ñoäc laäp giöõa hai bieán coät vaø haøng, kieåm nghieäp Chi-square seõ cho ra caùc keát quaû kieåm nghieäp nhö sau: Pearson chi- square, likelihood-ratio chi-square, and linear-by-linear association chi- square moãi caùi seõ ñöôïc söû duïng trong nhöõng tröôøng hôïp cuï theå - Theo ñònh nghóa hai bieán trong baûng laø ñoäc laäp vôùi nhau neáu nhö xaùc suaát sao cho moät tröôøng hôïp quan saùt (case) rôi vaøo moät tröôøng hôïp cuï theå (ví duï nhö giôùi tính laø Nam vaø ñang thaát nghieäp) laø ñöôïc taïo ra töø caùc xaùc suaát bieân (xaùc suaát coät vaø xaùc suaát haøng). Ví duï ta coù xaùc suaátBieân soaïn: Ñaøo Hoaøi Nam 43
    • Phaân tích döõ lieäu baèng SPSS moät ñoái töôïng quan saùt laø thaát nghieäp laø 35/923. Vaø xaùc suaát ñeå ñoái töôïng quan saùt laø Nam giôùi laø 452/923. Do hai bieán laø ñoäc laäp, theo lyù thuyeát xaùc suaát ñeå moät tröôøng hôïp quan saùt vöøa laø Nam giôùi vöøa laø Thaát nghieäp thì xaùc suaát trong tröôøng hôïp naøy phaûi laø (452/923) x (35/923) vaø baèng 0.018. Xaùc suaát naøy seõ ñöôïc söû duïng ñeå öôùc löôïng (estimate) soá löôïng caùc tröôøng hôïp quan saùt mong ñôïi trong töøng phaàn giao nhau giöõa hai bieán treân baûng cheùo döôùi ñieàu kieän hai bieán laø ñoäc laäp vôùi nhau. Do ñoù ñeå tính toaùn ñöôïc soá löôïng quan saùt mong ñôïi laø Nam giôùi vaø thaát nghieäp ta chæ vieäc nhaân xaùc suaát vöøa tìm ñöôïc vôùi toång soá maãu quan saùt (0.018 x 923). (Xem baûng phía cheùo phía döôùi) n h n gNT Na u o m t0 98 8T L 7C a . .4t 6 0Era c% o%% % v i9 22 4L 6C a . .73 0E%% % %2 83 2T 0C . .73 0E%% % %1 53 0T 5C . .19 0E%% % %3 84 7K 5C . .00 0E%% % %7 22 1T 3C . .00 0E%% % % - Ñeå kieåm nghieäm tính ñoäc laäp giöõa hai bieán, ngöôøi ta söû duïng phaân phoái ngaãu nhieân Chi bình phöông (2) vôùi tham soá thoáng keâ Pearson chi bình phöông ñeå tieán haønh so saùnh soá löôïng caùc tröôøng hôïp quan saùt ñöôïc vôùi soá löôïng caùc tröôøng hôïp mong ñôïi baèng coâng thöùc sau: r c (Oij  Eij ) 2 X  2 i 1 j 1 Eij - Khi keát quaû thoáng keâ Chi bình phöông (2) ñuû lôùn (Döïa vaøo lyù thuyeát phaân phoái Chi bình phöông vôùi ñoä tin caäy xaùc ñònh, kích côû maãu laø n, baät töï do-degree of freedom laø df=(r-1)(c-1)) ta coù theå keát luaän baùc boû giaû thuyeát ñoäc laäp giöõa hai bieán (H0). Hoaëc söû duïng giaù trò P (P-value Bieân soaïn: Ñaøo Hoaøi Nam 44
    • Phaân tích döõ lieäu baèng SPSS hay Asymtotic Significance) so saùnh vôùi möùc yù nghóa (Significance level) thöôøng laø α = 0.05 töông öùng vôùi 95% ñoä tin caäy, ta coù theå keát luaän baùc boû H0 khi p-value nhoû hôn hoaëc baèng möùc yù nghóa vaø ngöôïc laïi chaáp nhaän H0 khi p-value lôùn hôn möùc yù nghóa. - Tuy nhieân ñeå vieäc kieåm nghieäm naøy laø ñaùng tin caäy thì caùc soá lieäu trong baûng cheùo giöõa hai bieán ñang khaûo saùt phaûi thoûa maõn moät soá ñieàu kieän nhaát ñònh sau: o Khoâng toàn taïi ôû baát kyø oâ giao nhau giöõa hai bieán coù giaù trò mong ñôïi nhoû hôn 1. o Khoâng vöôït quaù 20% löôïng oâ giao nhau giöõa hai bieán ñang khaûo saùt trong baûng cheùo coù giaù trò nhoû hôn 5 (ñoái vôùi baûng 2x2-baûng maø moãi bieán trong baûng cheùo chæ coù hai giaù trò, phaàn traêm giôùi haïn naøy laø 0%) - Neáu khoâng thoûa maõn caùc ñieàu kieän treân ta phaûi tieán haønh loaïi boû bôùt caùc giaù trò trong moät bieán maø döõ lieäu giao nhau cuûa noù laø khoâng ñaùng keå (quaù nhoû) - Ñeå kieåm nghieäm tính ñoäc laäp giöõa hai bieán coät vaø haøng trong baûng cheùo, kieåm nghieäp Chi-square seõ cho ra caùc keát quaû kieåm nghieäp khaùc nhau nhö sau: Pearson chi-square, likelihood-ratio chi-square, vaø linear- by-linear association chi-square. - Thoâng thöôøng ñeå xaùc ñònh moái quan heä giöõa hai bieán trong baûng cheùo, vieäc söû duïng chæ soá naøo ñeå kieåm nghieäm tích ñoäc laäp giöõa hai bieán phuï thuoäc vaøo soá löôïng coät vaø haøng trong baûng, soá maãu nghieân cöùu, taàn suaát xuaát hieän mong muoán cuûa moät giaù trò trong bieán trong ñieàu kieän cuûa bieán khaùc, daïng ño löôøng cuûa caùc bieán trong baûng (daïng thang ño). Ta coù: o Döïa vaøo caùc heä soá Pearson Chi-square vaø Likelihood Ratio ta coù theå kieåm nghieäp moái lieân heä giöõa hai bieán maø khoâng caàn quan taâm ñeán soá löôïng haøng vaø coät trong baûng. o Hoaëc ta coù theå duøng chæ soá Linear-by-linear association khi maø caùc bieán trong baûng laø bieán ñònh löôïng. o Ñoái vôùi daïng baûng cheùo coù hai coät vaø hai doøng (2X2 tables) – moãi bieán trong baûng chæ coù hai giaù trò, ta duøng caùc chæ soá Yate’s corrected chi-square hay coøn goïi laø Continuity Correction ñaùnh giaù moái töông quan giöõa hai bieán trong baûng. o Söû duïng chæ soá Fisher’s exact test khi maø soá maãu nghieân cöùu vaø caùc giaù trò mong ñôïi nhoû, thoâng thöôøng ta seõ söû duïng chæ soá naøyBieân soaïn: Ñaøo Hoaøi Nam 45
    • Phaân tích döõ lieäu baèng SPSS khi maãu trong baûng nhoû hôn hoaëc baèng 20 hoaëc taàn suaát xuaát hieän mong muoán trong moät phaàn giao nhau giöõa hai bieán trong baûng (cell) nhoû hôn 5. - Ñeå keát luaän moái lieân heä giöõa hai bieán laø ñoäc laäp hay phuï thuoäc vaøo nhau (coù hay khoâng coù töông quan) ngöôøi ta döïa vaøo Asymptotic Significance vôùi soá maãu ñuû lôùn hoaëc phaân phoái laø phaân phoái chuaån. Ñaây laø chæ soá thoáng keâ ñeå ño löôøng vôùi möùc yù nghóa (thöôøng laø 5%) nhaèm ñöa ra keát luaän phaûn baùt hay chaáp nhaän giaû thuyeát ban ñaàu (Hai bieán laø ñoäc laäp vôùi nhau). Ta coù theå keát luaän giöõa hai bieán toàn taïi moät moái quan heä vôùi nhau khi maø Asym. Sig. nhoû hôn möùc yù nghóa vaø ngöôïc laïi. - Ñoái vôùi kieåm nghieäm Chi-square ta chæ coù theå xaùc ñònh giöõa hai bieán coù hay khoâng toàn taïi moät moái quan heä. Tuy nhieân ñeå ño löôøng cöôøng ñoä cuûa caùc moái quan heä naøy ñoøi hoûi caùc coâng cuï thoáng keâ khaùc seõ ñöôïc ñeà caäp sau ñaây. Correlation: - Duøng ñeå ño löôøng moái töông quan giöõa hai bieán thöù tö hoaëc khoaûng caùchï. Vieäc ño löôøng moái töông quan giöõa hai bieán thöù töï naøy chuû yeáu döï vaøo hai heä soá Spearman’s correlation coefficient rho vaø Pearson correlation coefficient. Trong ñoù: o Spearman’s rho ñöôïc duøng ñeå ño löôøng moái quan heä giöõa hai bieán thöù töï (caùc bieán naøy haàu heát ñeàu ñöôïc xaép xeáp töø thaáp nhaát ñeán cao nhaát). o Khi caùc bieán trong baûng laø caùc bieán ñònh löôïng ta söû duïng heä soá Pearson correlation coefficient ñeå ño löôøng moái quan heä tuyeán tính giöõa caùc bieán naøy. - Caùc giaù trò cuûa heä soá töông quan bieán thieân töø –1 ñeán 1, daáu coäng hoaëc tröø chæ ra höông töông quan giöõa caùc bieán (thuaän hay nghòch), giaù trò tuyeät ñoái cuûa chæ soá naøy cho bieát cöôøng ñoä töông quan giöõa hai bieán, giaù trò naøy caøng lôùn moái töông quan caøng maïnh. Moät soá ño löôøng moái töông quan khaùc giöõa hai bieán  Giöõa hai bieán ñònh danh: - Ñeå ño löôøng moái quan heä giöõa hai bieán bieåu danh. Söû duïng caùc heä soá Phi (coefficient) vaø Craémr’s V, Contingency coefficient ñeå ño löôøng neáu döïa vaøo keát quaû kieåm nghieäm Chi-bình phöông. ÔÛ ñaây caùc heä soá naøy seõ baèng 0 neáu vaø chæ neáu heä soá Pearson chi bình phöông baèng 0. Do ñoù ngöôøi ta söû duïng caùc thoâng soá naøy ñeå kieåm nghieäm giaû thuyeát cho raèng caùc heä soá naøy ñeàu baèng 0 - ñieàu naøyBieân soaïn: Ñaøo Hoaøi Nam 46
    • Phaân tích döõ lieäu baèng SPSS töông ñöông vôùi giaû thuyeát ñoäc laäp giöõa hai bieán, hay hai bieán khoâng coù moâí quan heä vôùi nhau. Ta seõ töø choái giaû thuyeát naøy - Phi: Chæ duøng cho daïng baûng 2x2 tables, heä soá phi coefficient naøy bieán thieân töø -1 ñeán +1. Do ñoù heä soá naøy ngoaøi khaû naêng chæ ra moái quan heä vaø cöôøng ñoä cuûa moái quan heä noù coøn chæ ra höôùng cuûa moái quan heä ñoù - Cramers V vaø Contingency coefficient (heä soá ngaãu hieân): Ñöôïc söû duïng cho baûng maø soá coät vaø haøng laø baát kyø, giaù trò kieåm nghieäm bieán thieân töø 0 ñeán 1, vôùi giaù trò 0 chæ ra khoâng coù moái quan heä giöõa caùc bieán - Ngoaøi ra coøn coù caùc heä soá ño löôøng tröïc tieáp nhö Lambda (symmetric and asymmetric lambdas and Goodman and Kruskal’s tau), vaø Uncertainty coefficient. Laø caùc ño löôøng khoâng döïa vaøo giaù trò Chi-square ñeå tính toaùn, vaø khoâng quan taâm ñeán tính ñoái xöùng cuûa phaân phoái chuaån. Caùc giaù trò cuûa heä soá naøy cuõng bieán thieân töø 0 ñeá 1 vaø ñöôïc duøng ñeå ño löôøng khaû naêng döï baùo cuûa moät bieán (bieán ñoäc laäp) ñoái vôùi moät bieán khaùc (bieán phuï thuoäc). Vôùi giaù trò 0 nhaän ñöôïc coù yù nghóa raèng nhöõng kieán thöùc veà bieán ñoäc laäp khoâng giuùp ích gì cho vieäc döï baùo nhöõng khaû naêng xaûy ra cuûa bieán phuï thuoäc, vaø giaù trò 1 cho bieát khi ta bieát ñöôïc nhöõng thoâng tin veà bieán ñoäc laäp thì noù seõ giuùp ta xaùc ñònh ñöôïc moät caùch hoaøn haûo caùc khaû naêng xaûy ra cho bieán phuï thuoäc. - Vieäc löïa choïn bieán naøo laø bieán ñoäc laäp vaø bieán naøo laø bieán phuï thuoäc tuøy thuoäc vaøo vaán ñeà cuï theå maø ta ñang khaûo saùt - Heä soá Asymptotic Std. Error coù theå ñöôïc duøng ñeå ñònh ra khoaûng tin caäy (95%) cho caùc tham soá ño löôøng (Value +(-) 2*Asymptotic std. Error)  Söû duïng Odds Ratio cho baûng hai coät hai haøng (2x2 tables) - Ñeå ño löôøng moái töông quan giöõa hai bieán cho loaïi baûng naøy ngöôøi ta coù theå söû duïng caùc keát quaû thoáng keâ Yates’ corrected chi – bình phöông vaø Fisher’s exact test. Caùc keát quaû naøy ñöôïc duøng ñeå kieåm nghieäm giaû thuyeát cho raèng caùc tyû leä giöõa caùc giaù trò trong hai bieán naøy laø ngang baèng nhau (ví duï nhö tyû leä ngöôøi nam ñi baûo taøng thì ngang baèng vôùi tyû leä ngöôøi nöõ ñi baûo taøng), töông töï vôùi caùc keát quaû thoáng keâ chi – bình phöông khaùc ta seõ töø choái giaû thuyeát H0 khi p- value nhoû hôn möùc tin caäy. - Ngoaøi phöông phaùp treân ta coøn coù theå söû duïng phöông phaùp odds ratio vaø relative risk ñeå ño löôøng moái lieân heä giöõa hai ñaëc tính.Bieân soaïn: Ñaøo Hoaøi Nam 47
    • Phaân tích döõ lieäu baèng SPSS Thoâng thöôøng moät trong hai ñaëc tính ñoù xuaát hieän tröôùc (ví duï nhö bieán chöùa ñaëc tính coù huùt thuoác hay khoâng) vaø sau ñoù laø seõ daãn ñeán moät ñaëc tính khaùc xuaát hieän theo sau (ví duï bieán chöùa ñaëc tính coù bò beänh lao phoåi hay khoâng). Ta goïi bieán chöùa ñaëc tính xuaát hieän tröôùc laø bieán nhaân toá (factor) vaø bieán theo sau laø bieán söï kieän (event). Ta coù hai phöông phaùp tính nhö sau: (1) Relative risk: Bieán söï kieän Yes No Tyû leä ruûi Tyû leä ruûi ro risk ro töông ñoái Relative risk Bieán nhaân toá Yes a b a/(a+b) a(c+d) No c d c/(c+d) c(a+b) Phöông phaùp naøy baét ñaàu vôùi bieán nhaân toá vaø theo sau ñoù ta ñeám soá moãi söï kieän xuaát hieän trong moãi nhoùm nhaân toá. Tyû leä ruûi ro ñöôïc tính rieâng bieät cho töøng nhoùm nhaân toá vaø tyû leä ruûi ro töông öùng laø tyû soá giuõa hai tyû leä ruûi ro cuûa töøng nhoùm nhaân toá (2) Odds ratio: Bieán nhaân toá Yes No odds Tyû leä odds Bieán söï kieän Yes a b a/b ad No c d c/d cb Phöông phaùp naøy baét ñaàu vôùi bieán söï kieän. Vôùi moät söï kieän (ví duï bò beänh lao phoåi) thì tyû leä giöõa ngöôøi huùt thuoác ñoái vôùi ngöôøi khoâng huùt thuoác laø bao nhieâu, goïi laø odd. Sau ñoù ta laäp tyû leä caùc odds naøy. - Caû hai phöông phaùp naøy ñeàu coù caùch kieåm nghieäp keát quaû gioáng nhau. Caû Tyû leä Odds vaø relative risk ñeàu nhaän giaù trò 1 khi caùc tyû leä naøy laø gioáng nhau. Vaø ñeå kieåm nghieäm giaõ thuyeát ban ñaàu cho raèng caùc tyû soá naøy laø nhö nhau (H0) - töø choái hay chaáp nhaän ta döïa vaøo khoaûng tin caäy (95%) xem xem giaù trò 1 coù naèm trong khoaûng tin caäy ñoù hay khoâng. Neáu giaù trò 1 khoâng naèm trong khoaûng tin caäy 95% ta töø choái giaû thuyeát H0, vaø coù theå xem giaù trò trong oâ (value) laø tyû soáBieân soaïn: Ñaøo Hoaøi Nam 48
    • Phaân tích döõ lieäu baèng SPSS dieãn giaûi. Neáu giaù trò 1 naèm trong khoaûng tin caäy 95%, khoâng caàn quan taâm ñeán caùc giaù trò trong coät value, bôûi vì kieåm nghieäm cho ta keát quaû chaáp nhaän giaû thuyeát hai tæ leä odds hoaëc relative cuûa hai giaù trò laø nhö nhau - Chuù yù phöông phaùp Odds ratio luoân luoân laáy tyû soá odd ôû haøng thöù nhaát chia cho haøng thöù hai, vaø söï kieän caàn quan taâm luoân luoân naèm ôû coät thöù nhaát. Coøn ñoái vôùi phöông phaùp Relative risk baát cöù coät naøo cuõng coù theå ñaïi dieän cho söï kieän caàn quan taâm (SPSS seõ ñöa ra caùc keát quaû khaùc nhau ñeå öôùc löôïng cho moãi caùi  Duøng Kappa ñeå ño löôøng söï ñoàng yù giöõa hai bieán trong moät baûng coù cuøng soá löôïng haøng vaø coät - Kappa duøng ñeå ño löôøng möùc ñoä ñoàng yù giöõa nhöõng ño löôøng cuûa hai nhoùm ñaùnh giaù ñoái vôùi cuøng moät tieâu chí naøo ñoù. Giaù trò 1 chæ ra söï hoaøn toaøn ñoàng yù giöõa hai nhoùm, giaù trò 0 chæ ra söï ñoàng yù chæ laø moät söï ngaãu hieân.Hoaëc ta duøng p-value ñeå kieåm nghieäm giaû thuyeát ban ñaàu H0 cho raèng caùc giaù trò ño löôøng naøy laø baèng khoâng. Kappa chæ thích öùng vôùi nhöõng baûng maø caùc bieán ñöôïc söû duïng trong baûng coù cuøng soá giaù trò trong bieán.  Ño löôøng moái töông quan giöõa caùc bieán thöù töï vaø bieán ñònh löôïng (1) Nominal by Interval: Duøng ño löôøng moái töông quan giöõa bieán bieåu danh vaø bieán ñònh löôïng trong baûng cheùo. Söû duïng heä soá Eta. (2) Correlation: Duøng ñeå ño löôøng moái töông quan giöõa hai bieán thöù tö hoaëc khoaûng caùchï. Vieäc ño löôøng moái töông quan giöõa hai bieán thöù töï naøy chuû yeáu döï vaøo hai heä soá Spearman’s correlation coefficient rho vaø Pearson correlation coefficient. Trong ñoù Spearman’s rho ñöôïc duøng ñeå ño löôøng moái quan heä giöõa hai bieán thöù töï (caùc bieán naøy haàu heát ñeàu ñöôïc xaép xeáp töø thaáp nhaát ñeán cao nhaát). Khi caùc bieán trong baûng laø caùc bieán ñònh löôïng ta söû duïng heä soá Pearson correlation coefficient ñeå ño löôøng moái quan heä tuyeán tính giöõa caùc bieán naøy. Caùc giaù trò cuûa heä soá töông quan bieán thieân töø –1 ñeán 1, daáu coäng hoaëc tröø chæ ra höông töông quan giöõa caùc bieán (thuaän hay nghòch), giaù trò tuyeät ñoái cuûa chæ soá naøy cho bieát cöôøng ñoä töông quan giöõa hai bieán, giaù trò naøy caøng lôùn moái töông quan caøng maïnh. (3) Ordinal: Duøng ño löôøng moái töông quan giöõa caùc bieán trong baûng cheùo trong ñoù caùc bieán ôû coät vaø doøng laø caùc bieán thöù töï, bao goàm caùc heä soá sau:Bieân soaïn: Ñaøo Hoaøi Nam 49
    • Phaân tích döõ lieäu baèng SPSS (1) Somers d: Ño löôøng moái töông quan phi ñoái xöùng giöõa hai bieán thöù töï, giaù trò bieán thieân töø –1 ñeán 1. (2) Gamma: Ño löôøng moái töông quan ñoái xöùng giöõa hai bieán thöù töï, giaù trò bieán thieân töø –1 ñeán 1. (3) Kendalls tau-b vaø Kendalls tau-c: Ño löôøng caùc moái quan heä phi tham soá giöõa hai bieán thöù töï, bieán thieân töø –1 ñeá 1Phaàn naøy coù theå xem theâm ví duï trong phaàn phuï luïcBieân soaïn: Ñaøo Hoaøi Nam 50
    • Phaân tích döõ lieäu baèng SPSS5. Laäp baûng cho bieán nhieàu traû lôøi:5.1. Ñònh nghóa nhoùm bieán nhieàu traû lôøi (define multi response sets)Trong caâu hoûi nhieàu traû lôøi seõ bao goàm nhieàu bieán chöùa ñöïng caùc traû lôøi coùtheå coù, nhöõng bieán naøy goïi laø bieán sô caáp. Do ñoù ñeå xöõ lyù, chuùng ta phaûi goäpcaùc bieán sô caáp naøy thaønh moät bieán goäp chöùa caùc bieán sô caáp. Sau ñoù trongcaùc phaân tích thoáng keâ lieân quan ñeán caâu hoûi nhieàu traû lôøi, chuùng ta seõ duøngbieán goäp naøy thay theá cho taát caû caùc bieán sô caáp. Bieán goäp chöùa ñöïng toaøn boäcaùc giaù trò trong caùc bieán sô caáp cuûa moät caâu hoûi nhieàu traû lôøi. Ví duï nhö caâuhoûi veà nhaän bieát saûn phaåm, ngöôøi tra lôøi coù theå lieät keâ ra nhieàu nhaõn hieäu maøhoï bieát, do ñoù ta phaûi khai baùo ñuû löôïng bieán ñeå chöùa ñöïng caùc nhaõn hieäuñöôïc lieät keâ töø ngöôøi traû lôøi, ñaây laø caùc bieán sô caáp. Tuy nhieân khi xöõ lyù takhoâng theå xöõ lyù rieâng bieät caùc bieán naøy, vì noù khoâng ñaïi dieän ñaày ñuû cho taátcaû caùc nhaõn hieäu ñöôïc nhaän bieát. Do ñoù khi tieán haønh phaân tích caâu hoûi nhaänbieát saûn phaåm naøy ta phaûi tieán haønh goäp caùc bieán sô caáp thaønh moät bieán goäpchöùa ñöïng taát caû caùc nhaõn hieäu ñöôïc lieät keâ.Ñeå tieán haønh goäp caùc bieán sô caáp naøy ta choïn menu Statistics/MultipleResponse/Define sets… ñeå môû hoäp thoaïi Define Multiple Response Sets nhuHình 6-11: Hình 6-11Choïn taát caû nhöõng bieán sô caáp lieân quan ñeán moät caâu hoûi nhieàu traû lôøi ôû hoäpthoaïi Set Definition beân traùi chuyeån sang hoäp thoaïi Variables in Set beân phaûi,ví duï ta coù 10 bieán ñôn chöùa ñöïng caùc nhaõn hieäu ñöôïc nhaän bieát, ta phaûi choïntaát caû 10 bieán naøy töø hoäp thoaïi Set Definition vaø chuyeån sang hoäp thoaïiVariable in Set. Sau ñoù chæ ñònh caùch maõ hoùa caùc bieán ñoù (dichotomy haycategory); daõy giaù trò maõ hoùa (Range …Through) xaùc ñònh khoaûng bieán thieâncho caùc giaù trò trong bieán goäp; xaùc ñònh teân vaø gaùn nhaõn cho bieán goäp. Sau ñoùBieân soaïn: Ñaøo Hoaøi Nam 51
    • Phaân tích döõ lieäu baèng SPSSaán thanh Add ñeå ñöa teân nhoùm vöøa xaùc ñònh vaøo hoäp Multi Response Sets.Sau khi tieán haønh khai baùo bieán goäp xong moïi söû lyù phaân tích caùc bieán nhieàutraû lôøi seõ ñöôïc tieán haønh treân caùc bieán goäp ñaõ ñöôïc khai baùo trong MultiResponse Sets.Trong khung Variable Are Code As, chuùng ta coù theå choïn moät hay hai muïcsau ñaây tuøy theo phöông phaùp maõ hoùa: - Dichotomies: Ñaây laø traïng thaùi maëc ñònh, vaø chuùng ta nhaäp giaù trò caàn ñeám vaøo hoäp Counted Value. Keát quaû chæ hieãn thò duy nhaát giaù trò ñeám vöøa khai baùo - Category: Moãi bieán sô caáp coù nhieàu hôn hai giaù trò, vaø chuùng ta nhaäp caùc giaù trò nhoû nhaát vaø lôùn nhaát cuûa daõy giaù trò maõ hoùa vaøo caùc oâ Range vaø thourgh (neân khai baùo moät khoaûng caùch caøng roäng caøng toát)Chuùng ta ñaët teân cho nhoùm ña bieán (toái ña 7 kyù töï) vaø nhaõn (toái ña 40 kyù töï)vaøo caùc hoäp Name vaø Label. Löu yù laø teân cuûa caùc nhoùm ña bieán chæ ñöôïc söûduïng trong caùc thuû tuïc xöõ lyù bieán nhieàu traû lôøi maø thoâi. Ñeå loaïi boû vaø söõa ñoåivieäc ñònh nghóa moät nhoùm bieán ña traû lôøi naøo ñoù ta di chuyeån veät saùng ñeán teânnhoùm ñoù vaø nhaán thanh remove ñeå loaïi boû vaø thanh Change ñeå thay ñoåi.5.2. Laäp baûng cho bieán nhieàu traû lôøiÑeå tieán haønh laäp baûng cho caùc bieán nhieàu traû lôøi, ta söû duïng caùc teân nhoùm ñabieán ñaõ ñöôïc ñònh nghóa baèng coâng cuï Define Multi Response Sets ñaõ ñöôïc ñeàcaäp ôû phaàn treân sau ñoù vaøo StatisticsMultiple response vaø choïn Frequencieshoaëc Crosstabs tuøy theo nhu caàu laäp baûng moät chieàu hay ña chieàu. Tuy nhieântrong caùc coâng cuï Frequencies vaø Crosstabs söû duïng cho bieán nhieàu traû lôøi chæmoâ taû taàn suaát xuaát hieän cuûa caùc giaù trò trong bieán goäp vaø caùc tyû leä % nhöngkhoâng coù caùc phöông phaùp kieåm nghieäm thoáng keâ keøm theo.6. Custom TableNgoaøi ra khi chuùng ta tieán haønh laäp baûng moâ taû thoáng keâ cho keát quaû cuoáicuøng cuûa vaán ñeà nghieân cöùu coù theå duøng caùc coâng cuï trong statisticscustomtable ñeå taïo ra caùc baûng bieåu, coù theå laø baûng moät chieàu, baûng nhieàu chieàuhoaëc caùc baûng bieåu moâ taû thoáng keâ tuøy theo yeâu caàu cuûa vaán ñeà nghieân cöùu.Caùc loaïi baûng naøy cho pheùp ta taïo ra caùc baûng bieåu ñeïp hôn. Tuy nhieân ngoaøivieäc truy suaát caùc giaù trò ñeám, tyû leä phaàn traêm thì noù khoâng cung caáp theâm chota phöông phaùp kieåm nghieäm thoáng keâ naøo khaùc keøm theo - Baûng bieåu theå hieän taàn soá xuaát hieän (Tables of frequencies): Cho pheùp chuùng ta taïo ra nhöõng baûng bieåu theå hieän taàn soá xuaát hieän cuûa moät hay nhieàu bieán ñônBieân soaïn: Ñaøo Hoaøi Nam 52
    • Phaân tích döõ lieäu baèng SPSS - Daïng baûng bieåu cô baûn (Basic tables): Theå hieän caùc döõ lieäu nghieân cöùu theo daïng baûng cheùo (cross-tabulation) giöõa hai bieán hoaëc giöõa moät bieán vaø moät nhoùm caùc bieán. - Daïng baûng ña bieán (Multiple response tables): Gioáng nhö basic tables theå hieän taàn suaát xuaát hieän vaø baûng cheùo, tuy nhieân daïng baûng bieåu naøy cho pheùp ta xaây döïng baûng bieåu cho caùc caâu traû lôøi ña bieán - Daïng baûng bieåu toång hôïp (General tables): Gioáng nhö baûng bieåu cô baûn vaø ña traû lôøi. Caùc döõ lieäu ñöôïc theå hieän döôùi daïng baûng cheùo, tuy nhieân ôû daïng baûng bieåu naøy cho pheùp ngöôøi phaân tích theå hieän moái lieân heä giöõa moät bieán vôùi nhieàu bieán khaùc treân cuøng moät baûng.7. So saùnh caùc giaù trò trung bìnhCoù nhieàu pheùp kieåm nghieäp ñöôïc söû duïng trong SPSS:- Neáu so saùnh giaù trò trung bình cuûa maãu vôùi moät giaù trò coá ñònh naøo ñoù ta söû duïng pheùp kieåm nghieäm t moät maãu (One-sample t test).- Neáu so saùnh giaù trò trung bình cuûa moät nhoùm caùc tröôøng hôïp quan saùt vôùi moät nhoùm quan saùt khaùc, ta söõ duïng kieåm nghieäm t maãu ñoäc laäp (Independent-sapmles t test).- Ñeå so saùnh giaù trò trung bình cuûa hai bieán ñöôïc khaûo saùt töø cuøng moät maãu ta söû duïng kieåm nghieäp t theo töøng caëp maãu (Paired-samples t test).- Hoaëc vôùi tröôøng hôïp ta coù nhieàu hôn hai maãu ñoäc laäp caàn kieåm nghieäm trung bình, ta coù theå duøng ANOVA moät chieàu (One-way ANOVA).Vôùi caùc tröôøng hôïp treân, hoaëc caùc bieán ñöôïc kieåm nghieäm trung bình ñoøi hoûiphaûi laø caùc bieán ñònh löôïng vaø phaân phoái phaûi laø phaân phoái ngaãu nhieân haymaãu nghieân cöùu phaûi ñuû lôùn. Tuy nhieân vôùi nhöõng tröôøng hôïp bieán quan saùt laøbieán ñònh löôïng (nhöng laø bieán thang ñoù thöù töï) hoaëc soá löôïng maãu khoâng ñuûlôùn hoaëc khoâng thoûa maõn ñieàu kieän phaân phoái chuaån ta coù theå tieán haønh kieåmnghieäp baèng coâng cuï Wilcoxon signed rank test trong kieåm nghieäm phi thamsoá7.1. MeansCoâng cuï Means duøng ñeå tính toaùn caùc giaù trò trung bình vaø ñöa caùc tham soáthoáng keâ lieân quan cho moät bieán phuï thuoäc trong phaïm vi caùc nhoùm cuûa moäthay nhieàu bieán ñoäc laäp. Ta coù theå löïa choïn caùc coâng cuï keøm theo nhö phaântích ANOVA moät chieàu, eta, vaø caùc kieåm nghieäm tuyeán tính. Ví duï ta coù theåño löôøng möùc ñoä ñaùnh giaù trung bình veà moät show quaûng caùo cuûa ba nhoùmtieâu duøng khaùc nhau, coâng nhaân, sinh vieân vaø coâng chöùc. Coâng cuï naøy seõ choBieân soaïn: Ñaøo Hoaøi Nam 53
    • Phaân tích döõ lieäu baèng SPSSta moät baûng cheùo theå hieän söï ñaùnh giaù cuûa ba nhoùm ngöôøi naøy veà show quaûngcaùo ñöôïc xem.Caùc bieán phuï thuoäc trong baûng Means phaûi laø bieán ñònh löôïng vaø caùc bieán ñoäclaäp thöôøng laø caùc bieán ñònh danh. Caùc ñaïi löôïng thoáng keâ ñöôïc söû duïng tuøythuoäc vaøo daïng döõ lieäu. Nhö mean vaø stadard deviation thì döïa treân lyù thuyeátphaân phoái chuaån vaø thích hôïp cho caùc bieán ñònh löôïng vôùi phaân phoái ñoái xöùng.Caùc ñaïi löông khaùc nhö Media, vaø range thì thích hôïp cho caùc bieán ñònh löôïngmaø ta khoâng bieát lieäu noù coù thoaû maõn caùc ñieàu kieän veà phaân phoái chuaån haykhoâng. Ta coù theå löïa choïn ANOVA vaø eta ñeå thöïc hieän vieäc phaân tích söï bieánthieân moät chieàu cho moãi bieán ñoäc laäp. Eta vaø eta bình phöông cho pheùp ñolöôøng caùc moái töông quan.Ñeå thöïc hieän coâng cu naøy ta choïn Compare Means/Means…. Töø Menus, ta coùhoäp thoaïi nhö hình 6-12. Hình 6-12Coù theå choïn moät hay nhieàu bieán phuï thuoäc. Di chuyeån veät ñen ñeán bieán chöùañöïng caùc giaù trò ñònh löôïng maø ta caàn quan saùt giaù trò trung ñoù trong phaïm vicaùc nhoùm trong bieán ñoäc laäp, söû duïng muûi teân chuyeån bieán ñaõ choïn vaøo hoäpthoaïi dependent list. Coù hai caùch ñeå löïa choïn bieán ñoäc laäp, laø bieán maø döïavaùo caùc giaù trò trong noù maø ta phaân chia caùc gia tri trung bình cuûa bieán phuïthuoäc thaønh nhöõng nhoùm nhoû. - Löïa choïn moät hoaëc nhieàu bieán ñoäc laäp. Luùc naøy caùc keát quaû cuõng nhö caùc ñaïi löôïng thoáng keâ keøm theo seõ ñöôïc theå hieän treân caùc baûn rieâng bieät cho moãi bieán ñoäc laäp - Löïa choïn bieán ñoäc laäp theo lôùp, moãi bieán ñoäc laäp trong moät lôùp, luùc naøy caùc keát quaû vaø ñaïi löôïng thoáng keâ ñöôïc theå hieän treân chung moät baûngBieân soaïn: Ñaøo Hoaøi Nam 54
    • Phaân tích döõ lieäu baèng SPSSCoâng cuï Options (Hình 6-13). Cho pheùp ta löïa choïn caùc ñaïi löôïng thoáng keâcaàn khaûo saùt vaø ANOVA, Eta, vaø Eta bình phöông (seõ ñöôïc ñeà caäp chi tieác veàyù nghóa ôû phaàn sau) Hình 6-13Bieân soaïn: Ñaøo Hoaøi Nam 55
    • Phaân tích döõ lieäu baèng SPSS7.2. Kieåm nghieäp t-moät maãuPhöông phaùp kieåm nghieäp moät maãu ñöôïc duøng ñeå kieåm ñònh coù hay khoâng söïkhaùc bieät cuûa giaù trò trung bình cuûa moät bieán ñôn vôùi moät giaù trò cuï theå, vôùi giaûthuyeát ban ñaàu cho raèng giaù trò trung bình caàn kieåm nghieäm thì baèng vôùi moätcon soá cuï theå naøo ñoù. Ví duï moät nhaø nghieân cöùu coù theå kieåm ñònh coù haykhoâng söï khaùc bieät giöõa chæ soá IQ trung bình cuûa moät nhoùm sinh vieân vôùi chæsoá cuï theå laø 100 ôû ñoä tinh caäy laø 95%. Phöông phaùp kieåm nghieäm naøy duøngcho bieán daïng thang ño khoaûng caùch hay tæ leä. Ta seõ loaïi boû giaû thuyeát banñaàu khi kieåm nghieäm choù ta chæ soá Sig. nhoû hôn möùc tinh caäy (0.05).Töø Menus ta choïn Compare MeanOne-Sample T Test… ta coù hoäp thoaïi nhöhình 6-14 Hình 6-14Löïa choïn bieán caàn so saùnh baèng caùch di chuyeån veät ñen vaø chuyeån ñeán vaøohoäp thoaïi Test Variable(s), nhaäp giaù trò caàn so saùnh vaøo hoäp thoaïi Test Value.Choïn coâng cuï Options (hình 6-15) ñeå xaùc ñònh ñoä tin caäy cho kieåm nghieäm,maëc ñònh laø 95% vaø caùch xöõ lyù ñoái vôùi caùc giaù trò khuyeát, Khi kieåm nghieäp caùcbieán ta seõ gaëp moät vaøi giaù trò khuyeát trong caùc bieán ñoù, vaán ñeà ôû ñaây laø ta loaïiboû caùc giaù trò khuyeát ñoù trong kieåm nghieäm hay bao haøm luoân taát caû. - Exclude cases analysis by analysis. Moãi kieåm nghieäm T söû duïng toaøn boä caùc tröôøng hôïp (cases) chöùa ñöïng giaù trò coù yù nghóa ñoái vôùi bieán ñöôïc kieåm nghieäm. Ñaëc ñieåm laø kích thöông maãu luoân thay ñoåi. - Exclude cases listwise. Moãi kieåm nghieäm T söû duïng chæ nhöõng tröôøng hôïp coù giaù trò ñoái vôùi toaøn boä taát caû caùc bieán ñöôïc söû duïng trong baát kyø kieåm nghieäm T test naøo. Kích thöôùc maãu luoân khoâng ñoåiBieân soaïn: Ñaøo Hoaøi Nam 56
    • Phaân tích döõ lieäu baèng SPSS Hình 6-15Ñieàu kieän ñeå tieán haønh moät kieåm nghieäm t moät maãu ñoøi hoûi döõ lieäu phaûi ñaùpöùng giaû ñònh sau: döõ lieäu phaûi laø phaân phoái chuaån, hoaëc kích thöôùc maãu phaûiñuû lôùn ñeå ñöôïc xem laø xaáp xæ phaân phoái chuaån.7.3. Kieåm nghieäp t hai maãu ñoäc laäpKieåm nghieäp naøy duøng cho hai maãu ñoäc laäp, daïng döõ lieäu laø daïng thang ñokhoaûng caùch hoaëc tyû leäÑoái vôùi daïng kieåm nghieäm naøy, caùc chuû theå caàn kieåm nghieäm phaûi ñöôïc aánñònh moät caùch ngaãu nhieân cho hai nhoùm döõ lieäu caàn nghieân cöùu sao cho baát kyømoät khaùc bieät naøo töø keát quaû nghieân cöùu laø do söï taùc ñoäng cuûa chính nhoùm thöûñoù, chöù khoâng phaûi do caùc yeáu toá khaùc. Ví duï nhö ta khoâng theå duøng phöôngphaùp naøy ñeå so saùnh thu nhaäp cuûa nam vaø nöõ bôûi vì thu nhaäp coøn bò aûnh höôùnglôùn bôøi trình ñoä hoïc vaán vaø ngheà nghieäp. Hoaëc ñeå ñaùnh giaù taùc ñoäng cuûa moätchöông trình quaûng caùo ta löïa choïn ra hai nhoùm khaùch haøng ñoäc laäp, nhoùm ñaõxem qua chöông trình quaûng caùo vaø nhoùm chöa xem qua chöông trình quaûngcaùo ñeå ñaùnh giaù möùc ñoä öa thích cuûa saûn phaåm ñaõ ñöôïc quaûng caùo. ÔÛ ñaâyngoaøi coâng cuï thöû laø vieäc xem quaûng caùo hoaëc khoâng xem, nhaø nghieân cöùuphaûi baûo ñaûm khoâng toàn taïi yeáu toá naøo ñaùng keå taùc ñoäng ñeán söï ñaùnh giaù veàsaûn phaåm, nhö giôùi tính, söï tieâu duøng, trình ñoä, … Toùm laïi ñeå ñaùnh giaù giaù tròtrung bình (veà ñaùnh giaù söï öa thích, thu nhaäp, chi tieâu, …) cuûa hai nhoùm ñoäclaäp nghóa laø caùc phaûn öùng thu ñöôïc cuûa nhoùm naøy khoâng bò aûnh höôûng bôûinhoùm kia vaø ngoaøi caùc taùc nhaân caàn ñaùnh giaù caàn phaûi chuù yù ñeán caùc taùc ñoängkhaùc coù theå laøm thay ñoåi söï phaûn öùng thu nhaän ñöôïc giöõa hai nhoùm.Caùc döõ lieäu caàn so saùnh naèm trong cuøng moät bieán ñònh löôïng. Ñeå so saùnh tatieán haønh nhoùm caùc giaù trò thaønh hai nhoùm ñeå tieán haønh so saùnh. Giaû thuyeátban ñaàu caàn kieåm nghieäm laø giaù trò trung bình cuûa moät bieán naøo ñoù thì baèngnhau giöõa hai nhoùm maãu vaø chuùng ta seõ töø choái giaû thuyeát naøy khi maø chæ soáSig. nhoû hôn möùc yù nghóa (thöôøng laø 0.05)Ñeå thöïc hieän vieäc so saùnh naøy ta vaøo Compare meansIndependent sample t-test…. Töø Menus ta ñöôïc hoäp thoaïi nhö hình 6-16:Bieân soaïn: Ñaøo Hoaøi Nam 57
    • Phaân tích döõ lieäu baèng SPSS Hình 6-16Di chuyeån veät toái vaøo bieán ñònh löôïng maø ta caàn so saùnh giaù trò trung bình,choïn baèng caùch nhaán nuùt muõi teân ñeå chuyeån bieán ñònh löôïng ñoù vaøo hoäp thoaïiTest variable(s). Ta coù theå choïn nhieàu bieán ñònh löôïng ñeå so saùnh.Di chuyeån veät toái ñeán bieán duøng ñeå ñònh ra caùc nhoùm caàn so saùnh vôùi nhau(thöôøng laø bieán ñònh danh) di chuyeån vaøo hoäp thoaïi Gouping variable. Coângcuï Define Groups… cho pheùp ta ñònh ra hai nhoùm caàn so saùnh vôùi nhau, nhöhình 6-17. Hình 6-17Bieân soaïn: Ñaøo Hoaøi Nam 58
    • Phaân tích döõ lieäu baèng SPSSCoù hai caùnh ñònh nhoùm so saùnh: - Söõ duïng con soá cuï theå, nhaäp hai giaù trò ñaïi dieän cho hai nhoùm caàn so saùnh trong bieán vaøo oâ group 1 vaø group 2, ví duï so saùnh thôøi gian töï hoïc cuûa hai nhoùm sinh vieân naêm nhaát vaø sinh vieân naêm cuoái naèm trong bieán loaïi sinh vieân vôùi 4 nhoùm sinh vieân ñöïôïc maõ hoùa nhö sau sinh vieân naêm nhaát: 1, sinh vieân naêm hai: 2, sinh vieân naêm ba: 3, sinh vieân naêm cuoái: 4. Ta nhaäp giaù trò 1 vaøo Group 1 vaø nhaän giaù trò 4 vaøo group 2. Luùc ñoù thôøi gian töï hoïc trung bình seõ ñöôïc so saùnh giöõa hai nhoùm sinh vieân naêm nhaát vaø sinh vieân naêm cuoái. - Caùch thöù hai laø söû duïng Cut point, nhaäp giaù tri phaân caùch caùc giaù trò trong bieán thaønh hai nhoùm. Toaøn boä caùc tröôøng hôïp coù giaù trò (con soá maõ hoùa) nhoû hôn giaù trò ñöôïc nhaäp vaøo trong cut point seõ ñònh ra moät nhoùm, vaø toaøn boä caùc tröôøng hôïp coù giaù trò maõ hoùa lôùn hôn hoaëc baèng giaù trò trong Cut point seõ taïo ra moät nhoùm khaùc. Ví duï ta muoán so saùnh thôøi gian töï hoïc cuûa sinh vieân hai naêm ñaàu vaø sinh vieân hai naêm cuoái, ta nhaäp giaù trò 3 (laø giaù trò maõ hoùa cuûa nhoùm sinh vieân naêm thöù ba) vaø cut point luùc ñoù ta taïo ñöôïc hai nhoùm sinh vieân bao goàm, sinh vieân hai naêm ñaàu (sinh vieân naêm thöù nhaát vaø sinh vieân naêm thöù hai) vaø nhoùm sinh vieân hai naêm cuoái (sinh vieân naêm ba vaø sinh vieân naêm cuoái) vaø seõ tieán haønh so saùnh soá thôøi gian töï hoïc trung bình treân hai nhoùm sinh vieân naøy.Ñoái vôùi coâng cuï Options coù thao taùc vaø yù nghóa gioáng coâng cuï Options ñaõ ñeàcaäp trong phaàn Kieåm nghieäp t moät maãu ñaõ ñeà caäp ôû phaàn tröôùc.Caùc giaû ñònh phaûi ñöôïc thoûa maõn khi duøng kieåm nghieäm t cho hai maãu ñoäclaäp: - Ñoái vôùi kieåm nghieäm t cho hai maãu coù phöông sai baèng nhau (coù theå kieåm ñònh giaû ñònh naøy baèng thoáng keâ Levene), caùc quan saùt phaûi ñoäc laäp, ñöôïc laáy ngaãu nhieân töø toång theå coù phaân phoái chuaån vôùi phöông sai ñaùm ñoâng baèng nhau - Ñoái vôùi kieåm nghieäm t cho hai maãu coù phöông sai khoâng baèng nhau, caùc quan saùt phaûi ñoäc laäp, ñöôïc laáy ngaãu nhieân töø toång theå coù phaân phoái chuaån.Bieân soaïn: Ñaøo Hoaøi Nam 59
    • Phaân tích döõ lieäu baèng SPSS Coâng thöùc tính t: Vôùi phöông sai hôïp nhaát Vôùi phöông sai rieâng bieät x1  x 2 x1  x 2 t t 1 1   S12 S 2  2 S    2  n n   n n  p  1 2   1 2 Vôùi: (n1  1) S12  (n 2  1)S 2 2 SP  2 n1  n 2  2 Vôùi xi: Giaù trò trung bình cuûa nhoùm i ni: Soá caùc quan saùt trong nhoùm i Si: Phöông sai maãu trong nhoùm i Baät töï do trong kieåmnghieäm phöông sai hôïp nhaát baèng df= (n1 + n2 – 2) Baät töï do trong kieåmnghieäm phöông sai rieâng bieät baèng: S12 2 S2 (  )2 n1 n2 df  ( S12 2 (S 2 n1 ) 2 n2 ) 2  n1  1 n2 17.4. Kieåm nghieäm t theo töøng caëp maãuÑaây laø daïng kieåm nghieäp duøng cho hai bieán trong cuøng moät maãu coù lieân heävôùi nhau, döõ lieäu daïng thang ñoù khoaûng caùch hoaëc tyû leä. Noù tính toaùn söï khaùcbieät giöõa caùc giaù trò cuûa hai bieán cho moãi tröôøng hôïp vaø kieåm nghieäm xem giaùtrò trung bình caùc khaùc bieät coù khaùc 0 hay khoâng. Giaû thuyeát ban ñaàu ñöôïc ñöara laø giaù trò trung bình cuûa caùc khaùc bieät laø baèng 0. Vaø ta seõ loaïi boû giaû thuyeátnaøy trong tröôøng hôïp kieåm nghieäm cho keát quaû Sig. nhoû hôn möùc yù nghóa(0.05)Lôïi ñieåm cuûa vieäc söû duïng kieåm nghieäm T theo töøng caëp laø ta loaïi tröø ñöôïcnhöõng yeáu toá taùc ñoäng beân ngoaøi vaøo nhoùm thöû. Ví duï ta khaûo saùt söï öa thíchcuûa hai loaïi nöôùc hoa chuaån bò tung ra thò tröôøng. Keát quaû kieåm nghieäp treânBieân soaïn: Ñaøo Hoaøi Nam 60
    • Phaân tích döõ lieäu baèng SPSScuøng moät nhoùm maãu seõ cho nhöõng thoâng tin xaùc thöïc hôn veà söï öa thích cuûamuøi vò hai loaïi nöôùc hoa naøy, ñoàng thôøi taäp trung vaøo söï khaùc bieät tö nhieâncuûa hai loaïi nöôùc hoa naøy. Neáu ta tieán haønh so saùnh giöõa hai nhoùm maãu ñoäclaäp vôùi nhau seõ cho ra nhöõng keát quaû khaùc bieät do nhöõng taùc nhaân khaùc vôùibaûn thaân söï khaùc bieät cuûa hai loaïi nöôùc hoa naøy nhö söï khaùc bieät veà conngöôøi, veà nhaän thöùc, veà kinh nghieäm cuõng nhö caùc yeáu toâ beân ngoaøi khaùc.Phöông phaùp naøy thích öùng cho vieäc kieåm nghieäm saûn phaåm. Phöông phaùp naøykieåm nghieäm giaû thuyeát cho raèng söï khaùc bieät giöõa hai trung bình maãu laø baèngkhoâng. Ta töø choái giaû thuyeát naøy khi möùc yù nghóa cuûa ta (significante) laø nhoûhôn möùc yù nghóa (thöôøng laø 5%).Ñieàu kieän yeâu caàu cho loaïi kieåm nghieäm naøy laø kích côû hai maãu so saùnh phaûibaèng nhau. Caùc quang saùt cho moãi beân so saùnh phaûi ñöôïc thöïc hieän trong cuøngnhöõng ñieàu kieän gioáng nhau. Caùc khaùc bieät töø giaù trò trung bình cuûa hai maãuphaûi laø phaân phoái chuaån hoaëc soá löôïng maãu ñuû lôùn ñeå xaáp xæ laø phaân phoáichuaån. Phöông sai cuûa moãi bieán laø ngang baèng hoaëc khoâng ngang baèng (coù theåkieåm nghieäm qua pheùp kieåm nghieäm phöông sai Levene).Ñeå thöïc hieän vieäc so saùnh naøy ta vaøo Compare meansPaired-samples t-test….Töø Menus ta ñöôïc hoäp thoaïi nhö hình 6-17: Hình 6-17Choïn hai bieán ta caàn so saùnh baèng caùch di chuyeån veät ñen ñeán laàn löôïc haibieán caàn quan saùt, di chuyeån bieán caàn quan saùt vaøo hoäp thoaïi Paired Variablesbaèng nuùt muõi teân. Paired-samples t test coøn cho ta keát quaû veà moái töông quangiöõa hai bieán ñang quan saùt. Cho bieát lieäu hai bieán naøy coù töông quan vôùi nhauhay khoâng, ñoä töông quan vaø chieàu töông quan (theå hieän ôû baûng Pairedsamples correlation).Bieân soaïn: Ñaøo Hoaøi Nam 61
    • Phaân tích döõ lieäu baèng SPSSCaùc giaû ñònh phaûi ñöôïc thoûa maõn khi duøng kieåm nghieäm caëp maãu laø caùc quansaùt ôû moãi caëp phaûi ñöôïc thöïc hieän trong cuøng moät ñieàu kieän. Nhöõng khaùc bieätgiaù trò trung bình phaûi coù phaân phoái chuaån. Phöông sai cuûa moãi bieán coù theångang baèng hoaëc khoâng.Ñoái vôùi kieåm nghieäm t caùc caëp maãu, SPSS seõ tính toaùn giaù trò khaùc bieät giöõahai beán trong töøng quan saùt vaø tieán haønh kieåm nghieäm giaù trò trung bình caùckhaùc bieät ñoù coù baèng 0 hay khoângTrong kieåm nghieäm hai maãu ñoäc laäp ñaõ ñeà caäp ôû phaàn tröôùc SPSS chia caùc giaùtrò cuûa moät bieán ñôn thaønh hai nhoùm döïa treân moät bieán kieåm soaùt vaø sau ñoùtieán haønh so saùnh trung bình trong bieán ñôn giöõa hai nhoùm ñoù vôùi nhau. Ñoáivôùi kieåm nghieäm caëp, giaù trò trung bình caùc giaù trò trong hai bieán ñöôïc so saùnhvôùi nhau. Kieåm nghieäm loaïi naøy ñöôïc söû duïng ñeå kieåm nghieäm xem trungbình cuûa hai ño löôøng laø khaùc bieät hay ngang baèng nhau, hay noùi caùch khaùckieåm nghieäm xem coù hay khoâng trung bình cuûa caùc giaù trò khaùc bieät giöõa haibieán treân moãi tröôøng hôïp quan saùt laø khaùc 0Ñeå tieán haønh kieåm nghieäm t theo caëp ñoøi hoûi hai bieán trong kieåm nghieäm phaûibaèng nhau veà soá löôïng maãu quan saùt vaø coù cuøng kieåu ño löôøng vaø ñôn vò ñolöôøngCoâng thöùc tin giaù trò kieåm nghieäm t theo caëp ñöôïc tính nhö sau: Trung bình caùc sai bieät giöõa hai bieán kieåm nghieäm t = SD n Vôùi SD: Ñoä leäch tieâu chuaån cuûa caùc sai bieät n : Soá löôïng caùc quan saùt (maãu)8.5. Phaân tích phöông sai moät chieàu (One way ANOVA)Caùc pheùp so saùnh ñeà caäp ôû phaàn treân chæ cho pheùp ta so saùnh trung bình haitoång theå döïa treân maãu töøng caëp phoái hôïp hoaëc hai maãu ñoäc laäp. Trong phaànnaøy phöông phaùp kieåm ñònh seõ môû roäng cho tröôøng hôïp so saùnh trung bình cuûanhieàu toång theå ñöôïc xaây döïng treân vieäc xem xeùt caùc bieán thieân (phöông sai)cuûa caùc giaù trò quan saùt trong noäi boä töøng nhoùm (maãu) vaø giöõa caùc nhoùm (maãu)vôùi nhau. ÔÛ ñaây ta ñeà caäp ñeán phaân tích phöông sai moät yeáu toá laø tröôøng hôïpchæ coù moät yeáu toá (bieán kieåm soaùt) ñöôïc xem xeùt nhaèm xaùc ñònh aûnh höôûngcuûa noù ñeán moät yeáu toá khaùc. Yeáu toá ñöôïc xem xeùt aûnh höôûng ñöôïc duøng ñeåphaân loaïi caùc quan saùt thaønh caùc nhoùm nhoû khaùc nhau.Moät caùch toång quaùt, giaû söû ta coù k nhoùm (maãu) n1, n2, …, nk quan saùt ñöôïcchoïn ngaãu nhieân ñoäc laäo töø k toång theå (n1, n2, …, nk coù theå khaùc nhau veà kíchBieân soaïn: Ñaøo Hoaøi Nam 62
    • Phaân tích döõ lieäu baèng SPSSthöôùc). Goïi 1, 2, …, k laø caùc trung bình cuûa k toång theå, xij laø quan saùt thöù jcuûa nhoùm thöù i. Ta coù theå moâ taû caùc quan saùt cuûa k nhoùm nhö sau: Nhoùm 1 2 … K X11 X21 … XK1 X12 X22 … XK2 … … … … X1n1 X2n2 … XKnKVôùi giaû ñònh caùc toång theå coù phaân phoái chuaån, coù phöông sai baèng nhau, caùcsai soá laø ñoäc laäp vôùi nhau, phaân tích phöông sai moät yeáu toá kieåm nghieäm giaûthuyeát ban ñaàu nhö sau: H0: 1 = 2 = … = k. Ta thaáy ôû ñaây laø vieäc so saùnhgiöõa caùc giaù trò trung bình, vaäy phaân tích phöông sai nghe nhö laø moät sai soùt.Tuy nhieân vieäc phaân tích phöông sai ôû ñaây döïa treân thoâng soá thoáng keâ F, vôùi Flaø tyû soá giöõa bieán thieân giöõa trung bình caùc nhoùm treân bieán thieân giöõa caùcquan saùt trong noäi boä nhoùm: Bieán thieân giöõa trung bình caùc nhoùm F= Bieán thieân giöõa caùc giaù trò quan saùt trong noäi boä nhoùmNeáu caùc giaù trò trung bình cuûa caùc nhoùm khaùc bieät nhau nhieàu, ñaëc bieät trongmoái quan heä vôùi söï bieán thieân cuûa noäi boä töøng nhoùm, giaù trò F thu ñöôïc seõ lôùnvaø khi ñoù giaû thuyeát H0: 1 = 2 = … = k. seõ bò töø choái. Vaø neáu ta quan saùtvieäc phaân tích phöông sai moät yeáu toá cho hai nhoùm thì keát quaû thoáng keâ F tínhñöôïc seõ chính baèng bình phöông keát quaû thoáng keâ t trong kieåm nghieäm t chohai maãu ñoäc laäp Caùc böôùc phaân tích phöông sai moät yeáu toá ñeå kieåm nghieäm söï ngang baènggiöõa caùc giaù trò trung bình cuûa k toång theåPhaân tích phöông sai moät yeáu toá ñeå kieåm nghieäm giaû thuyeát H 0: 1 = 2 = … =k ñöôïc tieán haønh thoâng qua caùc böôùc sau:Böôùc 1: Tính giaù trò trung bình xi cho töøng nhoùm vaø x chung cho taát caû caùcnhoùm Hoaëc ni x ij xi  i 1 (i  1,2,..., k ) ni nBieân soaïn: Ñaøo Hoaøi Nam k 63  ni xij k i ix  x i 1 j 1 ( n   ni ) nn i 1
    • Phaân tích döõ lieäu baèng SPSSBöôùc 2: Tính caùc ñaïi löôïng theå hieän söï bieán thieân trong noäi boä töøng nhoùm(SSW) vaø giöõa caùc nhoùm (SSG)Goïi SS laø ñaïi löôïng theå hieän söï bieán thieân trong noäi boä töøng nhoùm, ta coù: ni SS i   ( xij  xi ) 2 j 1Ta co ùtoång coäng caùc bieán thieân trong noäi boä töøng nhoùm laø: k ni SSW  SS1  SS 2  ...  SS k   ( xij  xi ) 2 i 1 j 1Noùi moät caùch ñôn giaûn SSW laø toång bình phöông caùc cheânh leäch giöõa töøngquan saùt vôùi trung bình cuûa nhoùm maø quan saùt ñoù thuoäc veà (within-groups sumof squares). SSW laø nhöõng bieán thieân khoâng do yeáu toá kieåm soaùt (yeáu toá duøngñeå phaân chia caùc nhoùm) gaây ra.Ñaïi löôïng theå hieän söï bieán thieân giöõa caùc nhoùm (between-groups sum ofsquares) ñöôïc tính baèng coâng thöùc: ni SSG   ni ( xi  x ) 2 i 1SSG theå hieän söï bieán thieân do söï khaùc nhau giöõa caùc nhoùm, töùc laø bieán thieândo yeáu toá kieåm soaùt gaây raGoïi STT laø toång bình phöông caùc cheânh leäch giöõa töøng quan saùt vôùi trung bìnhcuûa taát caû caùc quan saùt ta coù: k ni SST   ( xij  x ) 2 i 1 j 1Ñaõ chöùng mính ñöôïc raèng SST = SSW + SSG vaø coâng thöùc naøy chính laø cô sôûcuûa phöông phaùp phaân tích phöông sai moät yeáu toá vôùi bieán thieân cuûa caùc quansaùt so vôùi giaù trò trung bình laø toång coäng cuûa bieán thieân ñöôïc giaûi thích bôûi yeáutoá kieåm soaùt (SSG) vaø bieán thieân do caùc yeáu toá khaùc ngoaøi yeáu toá kieåm soaùt laøSSWBöôùc 3: Tính caùc öôùc löôïng cho phöông sai chung cuûa k toång theå, MSW vaøMSG, baèng caùch cia SSW vaø SSG cho soá baät töï do töông öùng, ta coù: SSWMSW= (Within-groups mean square)Bieân soaïn: Ñaøo Hoaøi Nam 64
    • Phaân tích döõ lieäu baèng SPSS n-k SSGMSG= (Between-groups mean square) k-1Tyû soá naøy ñöôïc duøng ñeå kieåm nghieäm giaû thuyeát H0. Neáu H0 ñuùng, nghóa laøtrung bình cuûa k toång theå baèng nhau thì tyû soá MSG/MSW seõ gaàn vôùi giaù trò 1.Ngöôïc laïi, khi caùc trung bình cuûa k toång theå khoâng baèng nhau, thì MSG lôùnhôn MSW, do vaäy tyû soá MSG/MSW seõ lôùn hôn 1. Möùc ñoä lôùn hôn bao nhieâuthì ñöôïc xem laø “ñuû lôùn” (tuyø thuoäc vaøo ñoä tin caäy) ñeå ta coù theå baùc boû H 0.Böôùc 4 vôùi vieäc tính ra gia trò kieåm ñònh F seõ lyù giaûi ñieàu naøyBieân soaïn: Ñaøo Hoaøi Nam 65
    • Phaân tích döõ lieäu baèng SPSSBöôùc 4: Tính giaù trò kieåm ñònh F: MSG F= MSWTa seõ baùc boû H0 ôû möùc yù nghóa  (thöôøng laø 0.05), neáu giaù trò p-value nhoû hônmöùc yù nghóa, töông öùng vôùi tyû soá F=MSG/MSW lôùn hôn Fk-1, n-k, , vôùi Fk-1, n-k, coù phaân phoái F vôùi k-1 vaø n-k baät töï do töông öùng ôû töû vaø maãu soá.Keát quaû phaân tích phöông sai moät yeáu toá thöôøng ñöôïc theå hieän döôùi daïng baûngsau: Bieán thieân Toång caùc Baät töï do Trung bình caùc Giaù trò P- (Variance) cheänh (df) cheânh leäch bình kieåm ñònh value leäch bình phöông-Phöông Sig. phöông sai (Sum of (Mean square) squares) Giöõa caùc SSG k-1 MSG=SSG/k-1 F=MSG/ nhoùm MSW (Between Groups) Trong noäi boä SSW n-k MSW=SSW/n-k nhoùm (Within Groups) Toång coâng SST n-1 (Total) So saùnh töøng caëp trung bình toång theåMoät khi ñaõ quyeát ñònh ñöôïc söï khaùc bieät toàn taïi giöõa caùc giaù trò trung bình-baùcboû H0, hieãn nhieân naûy sinh caâu hoûi tieáp theo laø trung bình nhöõng toång theå naøolaø khaùc nhau, toång theå naøo coù trung bình lôn hôn hoaëc nhoû hôn. Ñeå traû lôøi caùccaâu hoûi naøy SPSS cung caáp caùc kieåm nghieäm post hoc range vaø pairwisemultiple comparisons coù theå quyeát ñònh ñöôïc nhöõng giaù trò trung bình naøo laøkhaùc bieät. Range tests xaùc ñònh ra nhöõng nhoùm giaù trò trung bình ñoàng nhaátBieân soaïn: Ñaøo Hoaøi Nam 66
    • Phaân tích döõ lieäu baèng SPSSkhoâng toàn taïi söï khaùc bieät giöõa caùc giaù trò trung bình naøy. Kieåm nghieämPairwise multiple comparisons kieåm nghieäm söï khaùc bieät giöõa caùc caëp giaù tròtrung bình vaø ñöa ra moät ma traän ñaùnh daáu hoa thò chæ nhöõng nhoùm giaù tròtrung bình coù khaùc bieät ñaùng keå ôû möùc ñoä tin caäy laø 5%Ñoái vôùi giaû thuyeát caân baèng veà phöông sai ñöôïc chaáp nhaän (thoâng qua kieåmnghieäm Levene) ta coù caùc phöông phaùp kieåm nghieäm thoáng keâ sau ñeå so saùnhcaùc trung bình maãu:- The least significant difference (LSD) laø pheùp kieåm nghieäm töông ñöông vôùi vieäc söû duïng phöông phaùp kieåm nghieäm t rieâng bieät cho toaøn boä caùc caëp trong bieán. Yeáu ñieåm cuûa phöông phaùp naøy laø noù khoâng chænh lyù ñoä tin caäy cho töông thich vôùi vieäc kieåm nghieäm cho nhieàu so saùnh cuøng moät luùc. Do ñoù daãn ñeán ñoä tin caäy khoâng cao. Caùc kieåm nghieäm khaùc seõ ñöôïc tham khaûo sau ñaây loaïi boû ñöôïc yeáu ñieåm naøy baèng caùch ñieàu chænh ñoä tin caäy cho moät so saùnh nhieàu thaønh phaàn.- Phöông phaùp kieåm nghieäp Bonferroni vaø Tukey’s honestly significant difference thì ñöôïc söû duïng cho haàu heát caùc kieåm nghieäm so saùnh ña boäi. Kieåm nghieäm Sidak’s t test cuõng ñöôïc söû duïng töông tö nhö phöông phaùp Bonferroni tuy nhieân noù cung caáp nhöõng giôùi haïn chaët cheû hôn. Khi tieán haønh kieåm nghieäm moät soá löôïng lôùn caùc caëp trung bình Tukey’s honestly significant difference test seõ coù taùc ñoäng maïnh hôn laø Bonferroni test. Vaø ngöôïc laïi Bonferroni thì thích hôïp hôn cho caùc kieåm nghieäm coù soá löôïng caëp so saùnh ít.- Hochberg’s GT2 thì gioáng nhö Tukey’s honestly significant difference test nhöng thoâng thöôøng Tukey’s test coù taùc duïng toát hôn. Gabriel’s pairwise comparisons test thì gioáng nhö Hochberg’s GT2 nhöng noù thöôøng ñöôïc söû duïng hôn khi kích côû giöõa caùc maãu kieåm nghieäm coù söï sai bieät lôùn- Phöông phaùp kieåm nghieäm Dunnett’s pairwise thì ñöôïc duøng ñeå so saùnh caùc giaù trò trung bình cuûa caùc maãu vôùi moät gía trò trung bình cuï theå ñöôïc laáy töø trong taäp caùc maãu so saùnh. Thoâng thöôøng maëc ñònh nhoùm maãu cuoái cuøng laøm nhoùm kieån soaùt, hoaëc ta coù theå löïa choïn nhoùm ñaâu tieâu laøm nhoùm kieåm soaùt, luùc ñoù caùc giaù trò trung bình cuûa caùc nhoùm tong bieán ñoäc laäp seõ ñöôïc so saùnh vôùi giaù trò trung bình cuûa nhoùm ñaàu tieân hoaëc nhoùm sau cuøng cuûa bieán ñoäc laäp- Ryan, Einot, Gabriel, and Welsch (R-E-G-W) ñöa ra hai böôùc kieåm nghieäm. Ñaàu tieân tieán haønh kieåm nghieäm coù hay khoâng toaøn boä caùc giaù trò trung bình laø ngang baèng nhau hay khoâng. Neáu toaøn boä caùc giaù trò trung bình laø khoâng ngang baèng nhau sau ñoù böôùc thöù hai seõ kieåm nghieäm söï khaùc bieät giöõa caùc nhoùm nhoû vôùi nhau, ñeå tìm ra nhöõng nhoùm naøo thaät söï khaùc bieät vaø khoâng khaùc bieät veà giaù trò trung bình. Tuy nhieân vieäc kieåmBieân soaïn: Ñaøo Hoaøi Nam 67
    • Phaân tích döõ lieäu baèng SPSS nghieäm naøy khoâng neân thöïc hieän ñoái vôùi tröôøng hôïp kích côû maãu trong caùc nhoùm khoâng ngang baèng nhau- Thoâng thöôøng khi kích thöôùc maãu khoâng ngang baèng giöõa caùc nhoùm. Bonferroni vaø Scheffeù laø hai phöông phaùp kieåm nghieäm ñöôïc löïa choïn hôn laø phöông phaùp Tukey - Duncan’s multiple range test, Student-Newman-Keuls (S-N-K), and Tukey’s b cuõng töông töï tuy nhieân noù ít khi ñöôïc söû duïng nhö caùc phöông phaùp treân. - Kieåm nghieäm Waller-Duncan t ñöôïc söû duïng khi kích thöôùc maãu laø khoâng baèng nhau - Phöông phaùp kieåm nghieäm Scheffeù cho pheùp söï keát hôïp tuyeán tính cuûa nhöõng giaù trò trung bình seõ ñöôïc kieåm nghieäm, khoâng chæ laø so saùnh giöõa caùc caëp. Chính vì vaäy keát quaû cuûa kieåm nghieäm Scheffeù thì thöôøng thaän troïng hôn caùc phöông phaùp kieåm nghieäm khaùc , noù ñoøi hoûi moät söï khaùc bieät lôùn giöõa caùc giaù trò trung bình quan saùt ñöôïc ñeå baûo ñaûm tính thaät söï khaùc bieät cuûa pheùp kieåm nghieämÑoái vôùi tröôøng hôïp giaû thuyeát veà söï caân baèng phöông sai giöõa caùc maãu khoângñöôïc chaáp nhaän ta seõ söû duïng caùc phöông phaùp kieåm nghieäm sau ñeå tieán haønhso saùnh giaù trò trung bình giöõa caùc nhoùm:Tamhane’s T2, Dunnett’s T3, Games-Howell, Dunnett’s CVí duï nhö trong noâng nghieäp ngöôøi ta muoán bieát nguõ coác seõ phaùt trieån nhö theánaøo khi söû duïng caùc loaïi phaân boùn khaùc nhau. Nhaø nghieân cöùu muoán bieát lieäutaát caû caùc loaïi phaân boùn treân thì coù aûnh höôûng ngang baèng ñeán söï phaùt trieåncuûa ngu coác hay moät vaøi loaïi phaân boùn seõ coù taùc duïng toát hôn moät vaøi loaïikhaùc. Ñeå kieåm nghieäm ñieàu naøy ngöôøi ta duøng ANOVA ñeà kieåm nghieäm toácñoä phaùt trieån trung bình (coù theå laø trong löôïng nguõ coác thu hoaïch, chieàu caocuûa caây, soá löôïng traùi trung bình thu hoaïch ñöôïc, …) ñaây chính laø caùc giaù tròtrung bình ñöôïc söû duïng trong thoáng keâ.ANOVA thoâng thöôøng kieåm nghieäm treân moät soá löôïng maãu lôùn hôn hai, neáusoá löôïng maãu baèng 2 ta coù theå duøng moät phöông phaùp töông ñoái ñôn giaõn hônlaø kieåm nghieäm t hai maãu nhö ñaõ ñeà caäp ôû phaàn treân. ANOVA ñöôïc söû duïngroäng raõi trong thöïc teá bôûi vì ta seõ gaëp raát nhieàu tröôøng hôïp ñoøi hoûi ta phaûikieåm nghieäm nhieàu maãu trong cuøng moät luùc. Chuù yù neáu ta kieåm nghieäp theotöøng caëp laàn löôït baèng phöông phaùp kieåm nghieäm t hai maãu moãi laàn kieåmnghieäm ñoä sai leäch seõ laø 5% (tuyø thuoäc vaøo möùc tin caäy maø ta mong muoán).Do ñoù khi kieåm nghieäm taát caû caùc caëp maãu laàn löôït tyû leä sai soùt seõ taêng leântheo moãi laàn. Do ñoù ANOVA seõ cho phep1 ta kieåm nghieäm taát caû caùc maãutrong cuøng moät möùc ñoä sai soùt laø 5% vaø kieåm nghieäm trong moät laànBieân soaïn: Ñaøo Hoaøi Nam 68
    • Phaân tích döõ lieäu baèng SPSSÑeå thöïc hieän kieåm nghieäm ANOVA, döõ lieäu ñoøi hoûi phaûi thoûa maõn moät soágiaû thuyeát sau: - Caùc maãu kieåm nghieäm phaûi ñoäc laäp vaø mang tính ngaãu nhieân - Caùc maãu söû duïng trong kieåm nghieäm phaûi coù phaân phoái chuaån hoaëc kích thöôùc maãu ñuû lôùn ñeå ñöôïc xem laø gaàn nhö phaân phoái chuaån. - Phöông sai cuûa caùc maãu thì phaûi ngang baêng nhau (coù theå kieåm nghieäp ñieàu naøy baèng pheùp kieåm nghieäm phöông sai Levene.Neáu nhö caùc maãu nghieân cöùu cuûa ta khoâng thoûa maõn ñieàu kieän treân ta coø theåduøng pheùp kieåm nghieän phi tham soá (nonparametric) nhö nhö pheùp kieåmnghieäm Kruskal-WallisVí duï minh hoïa:Caùc nhaø cheá bieán vaø phaân phoâí Coffee ôû thò tröôøng Hoa Kyø ñang ñoái maët vôùimoät tình hình baát oån veà giaù cuûa haït Coffee. Trong moät naêm giaù cuûa haït coffeetroäi xuït töø $1.40 moät pound (0.373 kg) leân $2.50/pound roài sau ñoù laïi tuït xuoáng$2.03/pound. Ngöôøi ta xaùc ñònh söï baát oån veà giaù coffee naøy laø do tình hìnhhoaït ñoäng cuûa baûn thaân caùc nhaø cheá bieán vaø phaân phoái coffee vaø moät yeáu toákhaùc raát quan troïng laø vaán ñeà haïn haùn ôû Brazil, bôûi vì Brazil saûn xuaát ra 30%saûn löôïng coffee treân theá giôùi, do ñoù thò tröôøng coffee raát nhaïy caûm vôùi nhöõngbieán chuyeån veà thôøi tieát (nguy cô haïn haùn) ôû Brazil.Ñeå taïo ra moät söï oån ñònh cho hoaït ñoäng cuûa mình moät nhaø phaân phoái Coffeemuoán loaïi boû maët haøng Coffee Brazil ra khoûi cô caáu haøng hoùa cuûa mình. Tuyhieân tröôùc khi thöïc hieän quyeát ñònh naøy coøn coù moät caân nhaéc laø lieäu loaïi boûmaët haøng Coffee Brazil thì coù laøm giaûm doanh soá cuûa coâng ty hay khoâng. Vìvaäy coâng ty thueâ moät coâng ty nghieân cöùu Marketing tieán haønh kieåm nghieämthoâng keâ veà söï öa thích muøi vò coffee cuûa khaùch haønh tieâu duøng Coffee treânthò tröôøng. Coâng ty tieán haønh khaûo saùt döïa treân ba nhoùm khaùch haøng ñöôïc löïachoïn ngaãu nhieân bao goàm nhoùm khaùch haøng chuyeân tieâu duøng Coffee Brazil,Nhoùm khaùch haøng chuyeân tieâu duøng Coffee Colombia vaø nhoùm khaùch haøngtieâu duøng Coffee Chaâu Phi (ñaây laø 3 loaïi Coffee ñöôïc tieâu duøng chuû yeáu cuûacoâng ty). Chuù yù coâng ty loaïi tröø nhöõng nhoùm khaùch haønh vöøa tieâu duøng nhieàuloaïi coffee khaùc nhau, ñeå baûo ñaûm tính ñoäc laäp cuûa caùc maãu ñöôïc choïn, vaø donghieân cöùu veà muøi vò neân ñoøi hoûi choïn nhöõng khaùch haøng coù gu tieâu duøngrieâng bieät. ÔÛ ñaây coâng ty muoán xaùc ñònh xem lieäâu coù söï khaùc bieät veà söï möùcñoä öa thích ñoái vôùi ba loaïi coffee (Seõ cho khaùch haønh thöû ba loaïi coffee vaøkhaûo saùt söï ñaùnh giaù veà möùc ñoä öa thích cuûa ba loaïi Coffee) hay coù söï khaùcnhau vaø khaùc nhau naøy nhö theá naøo ôû bao loaïi Coffe vaø ôû ba nhoùm khaùchhaøng.Bieân soaïn: Ñaøo Hoaøi Nam 69
    • Phaân tích döõ lieäu baèng SPSSDöïa vaøo keát quaû phaân tích ANOVA seõ cho ta bieát lieäu möùc ñoä öa thích trungbình cuûa ba nhoùm khaùch haøng treân laø gioáng nhau hay khaùc nhau ñoái vôùi töøngloaïi coffee. Sau ñoù duøng phöông phaùp kieåm nghieäp Post Hoc ñeå xaùc ñònhnhöõng khaùc bieät cuûa töøng nhoùm khaùch haøng veà loaïi coffee ñaõ thöû.Sau khi duøng ANOVA khaûo saùt söï khaùc bieät giöõa caùc maãu. Neáu ta coù ñuû cô sôûñeå keát luaän laø khoâng coù söï khaùc bieät giöõa caùc maãu. Ta coù theå keát thuùc coângvieäc (vieäc loaïi boû coffee brazil khoâng gaây aûnh höôûng ñeán doanh soá, ngöôøi tieâuduøng coù theå chuyeån sang coffee comlobia hoaëc chaâu Phi moät caùch deã daøng).Tuy nhieân khi ta loaïi boû giaõ thuyeát veà söï ngang baèng giöõa caùc nhoùm. Ta phaûixaùc ñònh tieáp söï khaùc bieät nhö theá naøo giöõa caùc maãu kieåm nghieäm. Chuùng tacaàn phaûi xaùc ñònh höôùng vaø ñoä lôùn cuûa caùc khaùc bieät naøy baèng caùch laàn löôïtso saùnh söï khaùc bieät giöõa caùc maãu vôùi nhau (ngöôøi tieâu duøng coffee brazil coùtheå thích coffee comlombia hôn coffe chaâu Phi, hoaëc ngöôøi tieâu duøng coffeebrazil ñaùnh giaù coffee brazil ngang baèng vôùi coffee colombia, trong khi möùcñoä öa thích coffee chaâu Phi thì thaáp hôn do ñoù ñeå giaûm thieåu söï maát doanh soábaùn coffee brazil khi loaïi boû maët haøng coâng ty neân taêng löôïng coffeecomlombia tieâu thuï treân thò tröôøng) caùc coâng cuï thoáng keâ trong kieåm nghieäpPost Hoc cho pheùp ta thöïc hieän coâng vieäc naøy.Phaân tích phöông sai moät chieàu laø tieán trình phaân tích phöông sai moät chieàucho moät bieán ñònh löôïng phuï thuoäc vôùi moät yeáu toà ñôn leû hay coøn goïi laø bieánñoäc laäp. Phaân tích phöông sai (ANOVA) ñöôïc duøng ñeå kieåm nghieäm giaûthuyeát cho raèng taát caû caùc giaù trò trung bình ñeàu ngang baèng nhau. Kyû thuaätnaøy laø moät daïng môû roäng cuûa kieåm nghieäm T hai maãu.Ñeå xaùc ñònh söï khaùc bieät giöõa caùc giaù trò trung bình chuùng ta coù theå muoán bieátnhöõng giaù trò trung bình naøo laø khaùc bieät. Moät khi ñaõ quyeát ñònh ñöôïc söï khaùcbieät toàn taïi giöõa caùc giaù trò trung bình, caùc kieåm nghieäm post hoc range vaøpairwise multiple comparisons coù theå quyeát ñònh ñöôïc nhöõng giaù trò trung bìnhnaøo laø khaùc bieät. Range tests xaùc ñònh ra nhöõng nhoùm giaù trò trung bình ñoàngnhaát khoâng toàn taïi söï khaùc bieät giöõa caùc giaù trò trung bình naøy. Kieåm nghieämPairwise multiple comparisons kieåm nghieäm söï khaùc bieät giöõa caùc caëp giaù tròtrung bình vaø ñöa ra moät ma traän ñaùnh daáu hoa thò chæ nhöõng nhoùm giaù tròtrung bình coù khaùc bieät ñaùng keå ôû möùc ñoä tin caäy laø 5%Ñoái vôùi giaû thuyeát caân baèng veà phöông sai ñöôïc chaáp nhaän (thoâng qua kieåmnghieäm Levene) ta coù caùc phöông phaùp kieåm nghieäm thoáng keâ sau ñeå so saùnhcaùc trung bình maãu:- The least significant difference (LSD) laø pheùp kieåm nghieäm töông ñöông vôùi vieäc söû duïng phöông phaùp kieåm nghieäm t rieâng bieät cho toaøn boä caùc caëp trong bieán. Yeáu ñieåm cuûa phöông phaùp naøy laø noù khoâng chænh lyù ñoä tinBieân soaïn: Ñaøo Hoaøi Nam 70
    • Phaân tích döõ lieäu baèng SPSS caäy cho töông thich vôùi vieäc kieåm nghieäm cho nhieàu so saùnh cuøng moät luùc. Do ñoù daãn ñeán ñoä tin caäy khoâng cao. Caùc kieåm nghieäm khaùc seõ ñöôïc tham khaûo sau ñaây loaïi boû ñöôïc yeáu ñieåm naøy baèng caùch ñieàu chænh ñoä tin caäy cho moät so saùnh nhieàu thaønh phaàn.- Phöông phaùp kieåm nghieäp Bonferroni vaø Tukey’s honestly significant difference thì ñöôïc söû duïng cho haàu heát caùc kieåm nghieäm so saùnh ña boäi. Kieåm nghieäm Sidak’s t test cuõng ñöôïc söû duïng töông tö nhö phöông phaùp Bonferroni tuy nhieân noù cung caáp nhöõng giôùi haïn chaët cheû hôn. Khi tieán haønh kieåm nghieäm moät soá löôïng lôùn caùc caëp trung bình Tukey’s honestly significant difference test seõ coù taùc ñoäng maïnh hôn laø Bonferroni test. Vaø ngöôïc laïi Bonferroni thì thích hôïp hôn cho caùc kieåm nghieäm coù soá löôïng caëp so saùnh ít.- Hochberg’s GT2 thì gioáng nhö Tukey’s honestly significant difference test nhöng thoâng thöôøng Tukey’s test coù taùc duïng toát hôn. Gabriel’s pairwise comparisons test thì gioáng nhö Hochberg’s GT2 nhöng noù thöôøng ñöôïc söû duïng hôn khi kích côû giöõa caùc maãu kieåm nghieäm coù söï sai bieät lôùn- Phöông phaùp kieåm nghieäm Dunnett’s pairwise thì ñöôïc duøng ñeå so saùnh caùc giaù trò trung bình cuûa caùc maãu vôùi moät gía trò trung bình cuï theå ñöôïc laáy töø trong taäp caùc maãu so saùnh. Thoâng thöôøng maëc ñònh nhoùm maãu cuoái cuøng laøm nhoùm kieån soaùt, hoaëc ta coù theå löïa choïn nhoùm ñaâu tieâu laøm nhoùm kieåm soaùt, luùc ñoù caùc giaù trò trung bình cuûa caùc nhoùm tong bieán ñoäc laäp seõ ñöôïc so saùnh vôùi giaù trò trung bình cuûa nhoùm ñaàu tieân hoaëc nhoùm sau cuøng cuûa bieán ñoäc laäp- Ryan, Einot, Gabriel, and Welsch (R-E-G-W) ñöa ra hai böôùc kieåm nghieäm. Ñaàu tieân tieán haønh kieåm nghieäm coù hay khoâng toaøn boä caùc giaù trò trung bình laø ngang baèng nhau hay khoâng. Neáu toaøn boä caùc giaù trò trung bình laø khoâng ngang baèng nhau sau ñoù böôùc thöù hai seõ kieåm nghieäm söï khaùc bieät giöõa caùc nhoùm nhoû vôùi nhau, ñeå tìm ra nhöõng nhoùm naøo thaät söï khaùc bieät vaø khoâng khaùc bieät veà giaù trò trung bình. Tuy nhieân vieäc kieåm nghieäm naøy khoâng neân thöïc hieän ñoái vôùi tröôøng hôïp kích côû maãu trong caùc nhoùm khoâng ngang baèng nhau- Thoâng thöôøng khi kích thöôùc maãu khoâng ngang baèng giöõa caùc nhoùm. Bonferroni vaø Scheffeù laø hai phöông phaùp kieåm nghieäm ñöôïc löïa choïn hôn laø phöông phaùp Tukey- Duncan’s multiple range test, Student-Newman-Keuls (S-N-K), and Tukey’s b cuõng töông töï tuy nhieân noù ít khi ñöôïc söû duïng nhö caùc phöông phaùp treân.Bieân soaïn: Ñaøo Hoaøi Nam 71
    • Phaân tích döõ lieäu baèng SPSS- Kieåm nghieäm Waller-Duncan t ñöôïc söû duïng khi kích thöôùc maãu laø khoâng baèng nhau- Phöông phaùp kieåm nghieäm Scheffeù cho pheùp söï keát hôïp tuyeán tính cuûa nhöõng giaù trò trung bình seõ ñöôïc kieåm nghieäm, khoâng chæ laø so saùnh giöõa caùc caëp. Chính vì vaäy keát quaû cuûa kieåm nghieäm Scheffeù thì thöôøng thaän troïng hôn caùc phöông phaùp kieåm nghieäm khaùc , noù ñoøi hoûi moät söï khaùc bieät lôùn giöõa caùc giaù trò trung bình quan saùt ñöôïc ñeå baûo ñaûm tính thaät söï khaùc bieät cuûa pheùp kieåm nghieämÑoái vôùi tröôøng hôïp giaû thuyeát veà söï caân baèng phöông sai giöõa caùc maãu khoângñöôïc chaáp nhaän ta seõ söû duïng caùc phöông phaùp kieåm nghieäm sau ñeå tieán haønhso saùnh giaù trò trung bình giöõa caùc nhoùm:Tamhane’s T2, Dunnett’s T3, Games-Howell, Dunnett’s CBieân soaïn: Ñaøo Hoaøi Nam 72
    • Phaân tích döõ lieäu baèng SPSSÑeå thöïc hieän pheùp kieåm nghieäm ANOVA ta vaøo Comapre meansOne-WayANOVA… töø thanh menus ñeå truy xuaát ra hoäp thoaïi nhö hình 6-18. Di chuyeånveät toái ñeán caùc bieán ñònh löôïng caàn so saùnh, chuyeån sang hoäp thoaïi DependentList. Löïa bieán kieåm soaùt töùc laø bieán ñoäc laäp (yeâu caàu phaûi coù ba giaù trò trôû leântrong bieán kieåm soaùt naøy) chuyeån bieán kieåm soaùt vaøo hoäp thoaïi Factor, Bieánkieåm soaùt naøy cho pheùp ta phaân caùc giaù trò trung bình theo töøng nhoùm ñeå kieåmnghieäm. Thao taùc ñeán ñaây cho pheùp ta ñöa ra keát luaän lieäu caùc trung bình cuûacaùc nhoùm coù baèng nhau hay khoâng. Hình 6-18Ñeå tieán haønh kieåm nghieäp so saùnh söï khaùc bieät giöõa caùc nhoùm vôùi nhau ta löïachoïn coâng cuï Post Hoc ta coù ñöôïc hoäp thoaïi nhö hình 6-19 vaø löïa choïn caùcphöông phaùp kieåm nghieäm thích hôïp Hinh 6-19Löïa choïn coâng cuï Options cho ta hoäp thoaïi nhö hình 6-20. Ñeå xaùc ñònh loaïiloaïi thoâng keâ moââ taû (Descriptive) vaø tính ñoàng nhaát cuûa phöông sai, coâng cuïñeå tính heä soá thoáng keâ Levene ñeå kieåm nghieäm söï ngang baèng veà phöông saiBieân soaïn: Ñaøo Hoaøi Nam 73
    • Phaân tích döõ lieäu baèng SPSSgiöõa caùc nhoùm (vieäc tính toaùn naøy quyeát ñònh ñeán söï löa chon phöông phaùpkieåm nghieäp trong phaàn Post Hoc. Coâng cuï Means Plot duøng ñeå hieån thò ñoà thòveà giaù tri trung bình cuûa caùc nhoùm. Coâng cuï Missing Values duøng ñeå kieåmsoaùt giaù trò khuyeát. Hình 6-20 - Exclude cases analysis by analysis: Nhöõng tröôøng hôïp coù giaù trò khuyeát ôû trong bieán phuï thuoäc vaø caû bieán kieåm soaùt seõ khoâng ñöôïc ñöa vaøo trong kieåm nghieäm. Ngoaøi ra nhöõng tröôøng hôïp coù giaù trò quan saùt naèm beân ngoaøi chuoåi ñaõ xaùc ñònh cho bieán kieåm soaùt cuõng khoâng ñöôïc söû duïng - Exclude cases listwise. Nhöõng tröôøng hôïp coù giaù trò khuyeát Cases trong bieán ñieàu khieån hoaëc baát kyø bieán phuï thuoäc naøo ñöôïc ñöa ra hoaëc khoâng ñöa ra kieåm nghieäm ñeàu bò loaïi tröø ra khoûi quaù trình kieåm nghieäm phaân tích .Caùc giaû ñònh phaûi ñöôïc thoûa maõn khi duøng phaân tích ANOVA moät chieàu - Caùc maãu döõ lieäu phaûi ñoäc laäp, ngaãu nhieân vaø ñöôïc laáy ra töø moät toång theå phaân phoái chuaån - Trong toång theå caùc phöông sai cuûa caùc maãu döõ lieäu phaûi baèng nhau (ñieàu naøy seõ ñöôïc kieåm nghieäm qua thoâng keâ Levene’s homogeneity- of-variance.Xem theâm vò duï trong phaàn phu luïcBieân soaïn: Ñaøo Hoaøi Nam 74