2012 03-15 standardization and social responsibility


Published on

Delivered to postgraduate business students at Kingston University in March 2012

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • This lecture will explore the definition of standards and the theory of standardization, focusing on how both the economy through innovation and knowledge management. The intent of this work is to show students how important an understanding of standardization is when they enter the workplace, have an innovation that they would like to bring to the market or become involved in the standardization process. It is recommended that this lecture is accompanied by the following: The handout “Standards and Standardization” The PAS 2050 standard and the Guide to PAS 2050 The consumer leaflets, ‘’Playing Safe’ and ‘Ethical Business: Protecting our Planet and the People on it’. BS 0: A standard for standards. Principles of standardization
  • ISO/IEC defined a standard as: “ [A] document, established by consensus and approved by a recognized body, that provides, for common and repeated use, rules, guidelines or characteristics for activities or their results, aimed at the achievement of the optimum degree of order in a given context NOTE: Standards should be based on the consolidated results of science, technology and experience, and aimed at the promotion of optimum community benefits.” This is a definition that has been accepted and repeated by many standardization organizations, including in BSI’s BS 0. If we were to go beyond the definition and look as standardization conceptually and theoretically, it could be said that it transcends being simple guidelines, specifications or best practice; standardization is a knowledge management tool in its basic form. These documents ensure that knowledge gained by practitioners is captured and made available to be the building blocks of further innovation. As previous research points out, “ Where higher education is more focused on training a new generation how to understand and use knowledge, standardization is concerned with distributing the knowledge from previous generations to ensure it is not lost. At its purest definition, standardization is a knowledge creation tool and, if participation in the process by knowledge workers was high within an economy, a vitally positive tool for that economy.”
  • The earliest found example of measurement systems were found with the Indus Valley Civilization of 3000-1500 BC . Their measurements-for length, mass and time-have been described as very precise, in fact their “chert” weights weighed approximately 28 grammes, making them similar to the Imperial ounce. Marcus Vitruvius Pollio , used contemporary measurement units to assist his work which led to him being commonly known as ‘The World’s First Engineer’. His writings inspired Da Vinci’s Vitruvian Man, seen here, which also shows the contemporary measurement units that Vitruvius used; the span, the cubit, the yard and the fathom. In the Magna Carta , you can see the government attempting to create consistent and unified measurements of certain items. Clause 35 states: “ There shall be standard measures of wine, ale, and corn (the London quarter), throughout the kingdom. There shall also be a standard width of dyed cloth, russet, and haberject, namely two ells within the selvedges. Weights are to be standardized similarly.”
  • The need to standardize grew out of the Industrial Revolution. In 1841, Sir Joseph Whitworth invented a screw thread known as the Whitworth screw thread, railway companies across the nation adopted this innovation over the years and decades that followed. Companies began working in their best interests to use this industry leading product and it became organically, but not formally, a standard. From 1850 onwards, the emerging British rail network changed the face of trade in the country and exacerbated the need to formally standardize. Markets were previously local and the rail lines offered producers the ability to transport goods into different markets and collaborate nationally with other suppliers. As Woodward points out: “ Now the engineering shops of Birmingham, the steel mills of Sheffield, the cotton looms of Manchester had all Britain on their doorsteps — and beyond England there were further markets to conquer in all the other countries of Europe which, with England, were thrusting forward with their own railway networks and industrial development.” The emergence of the rail lines created a number of problems: • The diversity of the sizes and quality of products made in different regions increased the risk for businesses to order from outside their locality and damaged competition and efficiency. • Matching components bought from different regions together to form a whole unit could very rarely be done without costly adjustment. A letter to The Times in 1895, presenting the example of a contractor who had to procure iron girders from Belgium to complete an order, encouraged London iron merchant Henry Skelton to write: “ Rolled steel girders are imported into Britain from Belgium and Germany because we have too much individualism in this country, where collective action would be economically advantageous. As a result, architects and engineers specify such unnecessary diverse types of sectional material for given work that anything like economical and continuous manufacture becomes impossible…no two professional men are agreed upon the size and weight of girder to employ for given work and the British manufacturer is everlastingly changing his rolls or appliance, at greatly increased cost, to meet irregular unscientific requirements of professional architects and engineers.” In 1900, Skelton was asked to present these views at a meeting of the British Iron Trade Federation where a prominent member of the Council of the Institution of Civil Engineers, Sir John Woolfe-Barry , took interest. Sir Wolfe-Barry was a famed engineer and the architect of Tower Bridge and used his influence to persuade the Institution to appoint a committee of leading civil engineers to consider standardizing iron & steel sections. On April 26th 1901, this committee met and founded the Engineering Standards Committee , with two representatives each from the Institution of Civil Engineers, Institution of Mechanical Engineers, Institution of Naval Architects and the Iron & Steel Institute.
  • There are 6 commonly considered levels of standardization, the first 2 of which are not produced by BSI but by individual companies. Corporate Technical Specifications are explicit sets of requirements to be satisfied by a material, product, or service. An example could be the product specifications of your laptop or iPod. These standards are quick to write because they are highly controlled by the company producing them. As we move up the diagram below, you’ll notice that each level takes longer to write as it requires consensus from a wider spectrum of stakeholders. Private standards are private documents owned and written by an organization or corporation. These are used and circulated as they determine necessary or useful. A simple example of this could be a company’s branding guidelines or the equality/health & safety policies which add a level to previously existing legislation or standards, tailored to the explicit needs of the company. The Publicly Available Specification (PAS) is a consultative document where the development process and written format is based on the British Standard model. Any organisation, association or group who wish to document standardized best practice on a specific subject, can commission a PAS, subject to the BSI acceptance process. The main difference is in the area of consensus; a British Standard must reach full consensus between all stakeholders on technical content, whilst a PAS invites comments from any interested party but does not necessarily incorporate them. This means that the timescale for the development of a PAS can be shorter, typically around 8 months. British Standards are the formally produced standards from BSI, the UK’s National Standards Body. The standards are written by consensus with input from industry, experts and other stakeholder groups like consumer representatives and academia where required. The different types of British Standards available (Specification, Code of Practice, Test Method, Guide, etc.) are detailed in the tables with your handouts. As, I said in the previous slide, there are also European and International standards bodies and these bodies produce, respectively, European standards and international standards . BSI, like most NSBs, adopts the standards at European and International level, so that these are effectively British standards as well (e.g. BS EN, BS ISO). In the case of European standards, we are obliged to adopt these and any UK work must stop (at ‘standstill’) if equivalent European work commences. This is why, for example, the international standards for quality management systems’ full registration in the UK is BS EN ISO 9000.
  • CEN is a major provider of European Standards and technical specifications. It is the only recognized European organization according to Directive 98/34/EC for the planning, drafting and adoption of European Standards in all areas of economic activity with the exception of electrotechnology (CENELEC) and telecommunication (ETSI). CEN's 31 National Members work together to develop voluntary European Standards (ENs). There are differences in the standardization process. There is still the public consultation process after which, taking into consideration the comments resulting from the CEN Enquiry, a final version is drafted. This draft is then submitted to the CEN Members for a weighted formal voting. After ratification by CEN, each of the National Standards Bodies adopts the European Standard as an identical national standard and withdraws any national standards which conflict with the new European Standard. Hence one European Standard becomes the national standard in the 31 member countries of CEN.
  • FirstGroup transport reduced energy consumption by 31%(ISO 14001) Shree Cement Ltd (SCL) reduced energy use and cost by nearly 2% (EN 16001) MERCEDES GP PETRONAS increased reliability of F1 team using British Standards Online (BSOL) Ennstone reduced employee liability insurance premiums by six-figure sum using Entropy® LG Electronics India estimates reduced energy consumption of 22% (EN 16001) Amba Research cut information security costs by 33% (ISO/IEC 27001)
  • All standards affect the public directly or indirectly, even though most are produced to serve the immediate needs of business and industry. Many, though, have a direct and beneficial impact on the general public. These include ‘traditional’ consumer related standards such as those for domestic appliances, or signs and symbols, as well as those newer types of standard for sustainability, social responsibility or services. The Consumer and Public Interest Network (CPIN) which started life in 1951 as the Woman’s Advisory Committee, is a network of consumer organisation and experts, co-ordinated by BSI’s Consumer and Public Interest Unit. The objective is to influence the content of standards to reflect the needs and proper expectations of the general public with regard to factors such safety and security, labelling, accessibility, fairness and redress. Representatives are recruited and supported by BSI. They come from diverse backgrounds and have a range of high quality expertise and experience. Those who are unfamiliar with standardization are given suitable training and guidance in the standardization process, including specific skills required for researching, reporting and attendance at meetings both here and abroad. The Consumer & Public Interest Network has an impact at all levels of BSI operation from the highest committee – the Standards Policy and Strategy Committee on which sits the Chair of our CPI strategic advisory committee, to the technical committees and PAS steering groups on which are CPI reps are directly involved. We have CPI Coordinators to mirror all the sectors in which BSI operates and other horizontal issues of particular concern to consumers and the public interest.
  • Quickly run through the series, referring to the consumer leaflet
  • Most Standards are voluntary agreed practices and, therefore, not regulatory documents. In some cases, however, a standard may be referred to by law – like BS 1363 parts 1& 2 for 13 amp fused plugs – or be mandated by a directive from the EU Commission. Standardisation requests (also known as mandates) are the mechanism by which the Commission requests the European Standards Organisations (ESOs) to develop and adopt European standards in support of European policies and legislation. Draft mandates are drawn up by the Commission services through a process of consultation with a wide group of stakeholders. Before being formally addressed to the ESOs, they are submitted for opinion to the Member States in the Standing Committee of the 98/34/EC Directive [212 KB] . The ESOs, which are independent organisations, have the right to refuse a mandate if they do not think that standards can be produced in the area being covered. In practice this refusal happens rarely due to the informal consultation mentioned above. Please note that European standards, even developed under a mandate and for European legislation, remain voluntary in their use. Three types of mandates could be considered: study mandates to check the feasibility of standardisation, mandates requesting the elaboration of a standardisation programme and mandates for the development and adoption of European standards.
  • There are a number of options to consider when deciding how you wish to comply to standards. Testing One option is testing, although this option has has a number of issues that must be consideredf irst. Firstly, testing is a snap shot in time . A sample might work at that moment, in those conditions, but will they work in a year’s time? You will also need to re-test if you make any design or operational changes to the product. Test subjects can also susceptible to golden sampling , so a company can choose its best products to go through the testing process, already assured it will pass. Testers should, in practice, mitigates these issues by producing a Test Report stating “ The sample submitted complied with the requirements of [standard number]” . The CE Mark Many people believe the CE mark is a quality mark, to prove that the product has been tested and certified for quality and safety. This is not strictly true. The CE mark demonstrates compliance to the EU New Approach Directives, which is a legal requirement for all products sold within the EU. As the CE mark shows compliance with the law, rather than working to an industry standard, it is not a quality mark. Standards bodies like BSI do not have the authority to give the CE marking, although it is BSI is a Notified Body for 15 testing EU Directives and 3 medical device EU Directives. I n some cases a company can self-declare that a product conforms to these Directives. They have to carry out a 1st Party conformity assessment (self-conformity) and keep documentary proof for authorities to access as and when they wish. Certification and Quality Marks Certification programmes are systems of continual assessment to a standard. This means that any issues that might arise in testing are removed. Certification is more than just a test and more than just a quality control system. It could be for a product or a service or a process and in many successful cases, result in the awarding of a quality mark. One highly recognizable example of a quality mark is the Kitemark. The Kitemark is a term and mark owned by BSI which is issued under license and the process for obtaining a Kitemark is arguably more stringent than the CE mark, involving 3rd Party assessment and certification . In order to obtain a Kitemark, a pre-audit visit is required, which is followed up by an initial assessment visit . The product is then type tested against the relevant standard, followed by a review by that specific Kitemark scheme manager. Once all these stages are passed, the Kitemark is awarded . That’s not where the process ends, though. There are continuing assessment visits and audit testing to ensure that the requirements continue to be met. There are a number of testing and certification bodies in the UK. If the need arises that your products or services need testing or certification, you should check whether the company has been accredited by the United Kingdom Accreditation Service. This will give you and your stakeholders peace of mind over the results.
  • “ The lack of a conclusive business case for corporate social responsibility is at the heart of the ongoing debate over the role of business in solving social and environmental problems. Although the link between SR activities and firm financial performance is still debated, research suggests that the relationship depends, at least in part, on how the SR initiative is executed.” (Peloza and Falkenburg, 2009) ISO 26000 states that social responsibility can help drive a company’s competitive advantage in the market through innovation; a comment that is not surprising. Standardization encourages and develops innovative practice which helps increase an organization’s profits. Standards like the ISO 9000 series of quality management systems, ISO 10001’s focus on customer services and ISO 14001 on Energy Management have become foundations for companies to build upon, covering vital areas which may otherwise be forgotten. Even on the national level, we are seeing standards which can foster stronger entrepreneurship, like BS 25999, focusing on business continuity management from BSI in the UK (BSI, 2010). Standardization alone has been shown to contribute £2.5bn to the UK economy (Swann, 2010), giving weight to the assertion in figure 3, that this standard can positively affect an organization’s profit margins.
  • ISO 26000 is a unique entry into the social responsibility argument as it goes beyond theory to produce an internationally agreed guidance to minimum best practice. Whilst many believe that social responsibility is solely a marketing or public relations issue, ISO 26000 suggests that a holistic social responsibility approach can reap great benefits, detailing seven core subjects for considerations
  • By following the standardization process, ISO 26000 amalgamated business cases and experience to produce cohesive guidance for businesses implementing social responsibility strategies. As figure 2 shows below, ISO 26000 first examines the concept of social responsibility, before detailing recommended practice to businesses wishing to integrate social responsibility throughout their organizations.
  • The BSI process for standardization is quite simple; based on consensus between stakeholders. The process starts with the proposal of a new work item. Most work items may be born within the committee, but new work can be proposed by anyone through BSI’s New Proposals website. If it is accepted, a small group of experts will draft the standard and then present the draft to the technical committee for wider consultation. Once the committee has approved the draft, it goes out for public comment — this is when anyone is free to propose changes or additions to the draft document. The public comment stage ensures that every national, European and international standard is transparent and accepted by the wider public. Once the public comments have been considered and appropriate actions taken, the draft goes forward for final approval . At the national level, this would be done by committee consensus; however European and international standards are also subject to voting by the member bodies of the organizations. The secretary or chairperson of the committee then gives endorsement to publish and the standard becomes available to the public. Standards are not just one-off declarations. They are reviewed at least once every 5 years to ensure the information within them is still relevant.
  • 2012 03-15 standardization and social responsibility

    1. 1. Standardization andSocial ResponsibilityNewell Hampson-Jones,Education Sector Representative, British Standards Institution15th March, 2012Produced in Collaboration with:John LoganDr Nor AzizThe Sustainability HubKingston University
    2. 2. 2What are standards?
    3. 3. 3Societal Standardization• c. 3000 BC – c. 1500 BC Indus Valley Civilization  First to develop uniform weights and measures• c. 80–70 BC – c. 15 BC Marcus Vitruvius Pollio  ‘The first engineer’• 1215 Magna Carta  Clause 35 established consistent measures
    4. 4. 4 Formal Standardization • Industrial Revolution • 1841 – Sir Joseph Whitworth • 1850 onwards – The birth of the railways • 1895 – Henry Skelton • 1901 – Sir John Wolfe-BarryImage: Tom Curtis / FreeDigitalPhotos.net
    5. 5. 5 Types of Standard Int’l Standards (ISO) European Standards (EN) Co e Tim ntr British Standards (BS) ol Publicly Available Specifications (PAS) Private Standards Corporate Technical SpecificationsLow High
    6. 6. Standardization BodiesBody British Standards Institution (BSI) European Committee for Standardization (CEN) International Organization for Standardization (ISO)Role National Standards Body European Standards Body International Standards BodyProcess Proposal for new work Acceptance Proposal for new work Acceptance Proposal for new work Acceptance Drafting Drafting Drafting Public Comment Public Comment Public Comment Approval Approval by Weighted Approval by OMOV Vote Publication of a British Publication of ISO Standard Publication of European Standard Standard Review Review Review
    7. 7. 7Impact of Standardisation UK – standards make Canada – 9% of economic Global – MPEG-2 digital annual contribution of growth attributed to standard created USD £2.5bn to economy standards, 1981-2004 2.5tr worth of business Germany – economic Australia – Standards in Global – internationalbenefits of standardization electrical and water crane maintenance represents 1% of GDP industries contribute AUD standards have saved 1.9bn to economy USD 3bn Sources: DTI/BSI, DIN, SCC/CBC, SA, MPEG Licensing Authority, ISO/TC 96
    8. 8. 8Using Standards FirstGroup (ISO 14001) Shree Cement Ltd (SCL) (EN 16001) MERCEDES GP PETRONAS LG Electronics India (EN 16001) Amba Research (ISO/IEC 27001)
    9. 9. PAS 2050
    10. 10. PAS 2050
    11. 11. PAS 2050
    12. 12. PAS 2050
    13. 13. PAS 2050
    14. 14. PAS 2050
    15. 15. BS 8900
    16. 16. Consumers and Standardization
    17. 17. BS 8900
    18. 18. BS 8900
    19. 19. BS EN 71 BS EN 71 standardsBS EN 71-1:2011 Safety of toys. Mechanical and physical propertiesBS EN 71-2:2011 Safety of toys. FlammabilityBS EN 71-3:1995, BS 5665-3:1995 Safety of toys. Specification for migration of certain elementsBS EN 71-4:2009 Safety of toys. Experimental sets for chemistry and related activitiesBS EN 71-5:1993+A2:2009, BS 5665-5:1993 Safety of toys. Chemical toys (sets) other than experimental setsBS EN 71-7:2002 Safety of toys. Finger paints. Requirements and test methodsBS EN 71-8:2011 Safety of toys. Activity toys for domestic useBS EN 71-9:2005+A1:2007 Safety of toys. Organic chemical compounds. RequirementsBS EN 71-10:2005 Safety of toys. Organic chemical compounds. Sample preparation and extractionBS EN 71-11:2005 Safety of toys. Organic chemical compounds. Methods of analysis Current work being done by CW/1511/30246171 DC BS EN 71-4. Safety of toys. Part 4. Experimental sets for chemistry and related activitiesBS EN 71-12 Safety of toys. Nitrosamines and nitrosatable substances. Methods of analysisBS EN 71-13 Safety of toys. Olfactory board games, cosmetic kits and gustativve games
    20. 20. Mandate Standards
    21. 21. 21Compliance with Standards
    22. 22. ISO 26000
    23. 23. ISO 26000
    24. 24. ISO 26000
    25. 25. 25The Standardization Process• Proposal for new work• Project acceptance• Drafting• Public Comment• Approval• Publication• Review
    26. 26. 26How Can You Get Involved?• Become a Committee member• Become a Consumer & Public Interest representative• Join BSI• Join the British Standards Society• Become a BSI author• Standards Development & Standards Proposal websites• Become a user of standards  Standards and publications  Self-assessment tools  British Standards Online (BSOL)
    27. 27. 27
    28. 28. 32Contact Name: Newell Hampson-Jones Title: Education Sector Representative Address: BSI 389 Chiswick High Road London W4 4AL Telephone: 020 8996 7227 / 07767 886 713 Email: newell.hampson-jones@bsigroup.com Links: www.bsigroup.com / www.bsieducation.org