Your SlideShare is downloading. ×
0
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Timmons, Shelly
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Timmons, Shelly

671

Published on

Published in: Health & Medicine
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
671
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Neuromonitoring Techniques in the Neuro ICU: Brain Tissue Oxygenation Shelly D. Timmons, MD, PhD, FACS, FAANS Director of Neurotrauma Geisinger Health System July 17, 2011
  • 2. Learning Objectives <ul><li>The attendee will: </li></ul><ul><ul><li>Be familiar with indications for use of brain tissue oxygenation in traumatic brain injury patients </li></ul></ul><ul><ul><li>Understand potential pitfalls and complications of brain tissue oxygenation monitoring </li></ul></ul><ul><ul><li>Understand commonly employed treatments for low brain tissue oxygenation </li></ul></ul>
  • 3. Balanced Approach <ul><li>Following Guidelines </li></ul><ul><li>Tailored Therapy </li></ul>
  • 4. TBI Treatment Goals <ul><li>Actions </li></ul><ul><li>Reduction of intracranial pressure </li></ul><ul><li>Maintenance of cerebral perfusion </li></ul><ul><li>Avoidance of Tissue Hypoxia </li></ul><ul><li>Goals </li></ul><ul><li>Prevention of Secondary Injury </li></ul><ul><li>Reduced Mortality </li></ul><ul><li>Improvements in Functional Outcome </li></ul>
  • 5. ICP MAP CBF P bt O 2 Brain Temp Na Osm Plt PT PTT Hgb Hct ABG Gluc Microdialysis CPP SjvO 2 EEG ECOG Neurological Exam Imaging Operative Findings
  • 6. <ul><li>Indicator of oxygen extraction by brain </li></ul><ul><li>Measures O 2 saturation in returning blood </li></ul><ul><ul><li>Compare with arterial O 2 saturation  Arteriovenous Oxygenation Difference (AVDO 2 ) </li></ul></ul><ul><ul><li>Used to assess CMRO 2 </li></ul></ul><ul><li>Variations are common from a variety of causes </li></ul><ul><li>Not commonly used—typically in clinical research centers </li></ul>Jugular Venous O 2 Saturation
  • 7. Jugular Venous O 2 Saturation <ul><li>High S jv O 2 correlates with </li></ul><ul><ul><li>Hyperemia / High CBF </li></ul></ul><ul><ul><li>BUT also correlates with low oxygen extraction in the brain indicating ischemia </li></ul></ul><ul><ul><li>p bt O 2 is a more direct evaluation of relative cerebral ischemia </li></ul></ul>From: Anesth Analg. 2000 Mar;90(3):559-66 Schell RM, Cole DJ. Techniques may be complimentary
  • 8. <ul><li>Xenon CT </li></ul><ul><li>PET </li></ul><ul><li>MRI </li></ul><ul><li>CBF Monitor </li></ul><ul><li>Future </li></ul><ul><ul><li>Near Infrared </li></ul></ul><ul><ul><li>Non-Invasive </li></ul></ul>Cerebral Blood Flow
  • 9. Cerebral Blood Flow Monitor <ul><li>Absolute, real-time continuous perfusion </li></ul><ul><li>Measured from 0 - 200 ml/100g/min. </li></ul><ul><li>Thermal diffusion probe -- a minimally invasive (<1 mm diameter), flexible, interstitial catheter </li></ul>
  • 10. <ul><li>Current technology allows for focal measurements, not global </li></ul><ul><li>Not a stand-alone monitor but good adjunct </li></ul><ul><li>pB t O 2 v alues can be manipulated through a variety of interventions </li></ul><ul><ul><li>Choosing appropriate interventions based upon underlying pathophysiology requires thorough knowledge and understanding of multiple parameters </li></ul></ul>Brain Tissue Oxygenation (pB t O 2 )
  • 11. Brain Tissue Oxygenation P bt O 2 <ul><li>Measures interstitial brain tissue oxygenation (P bt O 2 ) in mm Hg and brain temperature (°C) </li></ul><ul><li>Probe inserted approximately 35mm below the dura into the white matter of the brain </li></ul><ul><li>P bt O 2 used in conjunction with current ICP/CPP monitoring methods </li></ul>
  • 12. A closed polarographic probe with reversible electrochemical reactions Brain Tissue Oxygenation P bt O 2
  • 13. <ul><li>Oxygen Accuracy: </li></ul><ul><ul><li>P bt O 2 0-20 mmHg accuracy is ± 2 mmHg </li></ul></ul><ul><ul><li>P bt O 2 21-50 mmHg accuracy is ± 10% </li></ul></ul><ul><ul><li>P bt O 2 51-150 mmHg accuracy is ± 13% </li></ul></ul><ul><li>Temperature Accuracy: ± 0.2 °C </li></ul>Brain Tissue Oxygenation P bt O 2
  • 14. Insertion Technique <ul><li>Small Stab Incision </li></ul><ul><li>Small Drill Hole </li></ul><ul><li>Placement of Bolt </li></ul><ul><li>Zeroing of Catheters </li></ul><ul><li>Insertion of Catheters </li></ul><ul><ul><li>ICP </li></ul></ul><ul><ul><li>Brain Temperature / P bt O 2 </li></ul></ul>
  • 15. Techniques <ul><li>ICP Parenchymal Monitor </li></ul><ul><ul><li>With Ventricular Drainage </li></ul></ul><ul><ul><ul><li>Advantages </li></ul></ul></ul><ul><ul><ul><ul><li>Allow for continuous CSF drainage and continuous ICP measurement </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Allow for intermittent CSF drainage and continuous ICP measurement </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Allow for fluid-coupled mechanism of ICP confirmation </li></ul></ul></ul></ul><ul><ul><li>Without Ventricular Drainage </li></ul></ul><ul><ul><ul><li>Advantages </li></ul></ul></ul><ul><ul><ul><ul><li>Lower Complication Rate </li></ul></ul></ul></ul>
  • 16. Brain Oxygen Monitoring Guidelines 2008 <ul><li>Level I </li></ul><ul><ul><li>Insufficient Data </li></ul></ul><ul><li>Level II </li></ul><ul><ul><li>Insufficient Data </li></ul></ul><ul><li>Level III </li></ul><ul><ul><li>Jugular venous saturation (<50%) or brain tissue oxygen tension (<15 mm Hg) are treatment thresholds </li></ul></ul><ul><ul><li>Jugular venous saturation or brain tissue oxygen monitoring measure cerebral oxygenation </li></ul></ul>
  • 17. Indications <ul><li>Severe TBI (GCS 3-8) </li></ul><ul><li>Blunt Vascular Injury </li></ul>
  • 18. P bt O 2 <ul><li>Normal: 25-35 mmHg </li></ul><ul><li>Low P bt O 2 occurs frequently in the first 24 hours after injury </li></ul>Bardt TF, Unterberg AW, Hartl R, et al. Acta Neurochir 1998; 71:153–156 Dings J, Ja¨ger A, Meixensberger J, et al. Neurol Res 1998; 20(Suppl 1):S71–S75
  • 19. <ul><li>“ Since the first (mostly European) reports of continuous monitoring of P bt O 2 in humans, investigators have consistently shown correlations of P bt O 2 values with clinical course and outcomes, and of effects on P bt O 2 by various treatment interventions…” </li></ul>Timmons, SD Crit Care Med . 2010 Sep;38(9 Suppl):S431-44. These effects may be independent of effects on ICP or CPP
  • 20. P bt O 2 and Mortality <ul><li>Risk of death increases </li></ul><ul><ul><li>< 15 mmHg for 30 minutes </li></ul></ul><ul><ul><li>< 10 mmHg for 10 minutes </li></ul></ul><ul><li>P bt O 2 < 5 mmHg </li></ul><ul><ul><li>high mortality </li></ul></ul><ul><li>P bt O 2 < 2mmHg </li></ul><ul><ul><li>neuronal death </li></ul></ul>Bardt TF, Unterberg AW, Hartl R, et al. Acta Neurochir 1998; 71:153–156 N.B. Good outcomes are possible even with hypoxic episodes
  • 21. P bt O 2 and Mortality <ul><li>Time with </li></ul><ul><li>P bt O 2 < 10 mm Hg </li></ul><ul><li>< 30 minutes </li></ul><ul><li>vs. </li></ul><ul><li>> 30 minutes </li></ul>Bardt et al. 1998 6-Month GOS 35 Severe TBI Pts.
  • 22. Low P bt O 2 and Mortality <ul><li>Association with increased mortality </li></ul><ul><ul><li>Increasing duration of time < 15 </li></ul></ul><ul><ul><li>Any value < 6 also </li></ul></ul>Valadka AB, Gopinath SP, Contant CF, et al. Crit Care Med 1998; 26:1576–1581 Dings J, Ja¨ger A, Meixensberger J, et al. Neurol Res 1998; 20 (Suppl 1):S71–S75
  • 23. Low P bt O 2 and Mortality <ul><li>Increased mortality with shorter time periods as P bt O 2 decreases </li></ul><ul><li>50% Mortality </li></ul><ul><li><5 30 minutes </li></ul><ul><li><10 105 minutes </li></ul><ul><li><15 240 minutes </li></ul>6-Month GOS 101 Severe TBI Patients Van den Brink et al. 2000 Effects of obliterated cisterns
  • 24. Low P bt O 2 and Mortality <ul><li>Desaturations can occur even with acceptable ICP and CPP levels </li></ul><ul><li>These associated with higher mortality </li></ul><ul><li>Targeted therapies can improve outcome, even in the face of normal ICP/CPP </li></ul><ul><li>Additional benefit in the diffuse injury group </li></ul>Stiefel MF, Spiotta A, Gracia VH, et al. J Neurosurg 2005; 103:805–811 Stiefel MF, Udoetuk JD, Spiotta AM, et al. J Neurosurg 2006; 105:568–575 Narotam PK, Morrison JF, Nathoo N J Neurosurg 2009; 111:672–682
  • 25. Low P bt O 2 Causes <ul><li>Several correctable causes of cerebral oxygen desaturations </li></ul><ul><ul><li>Insufficient CPP </li></ul></ul><ul><ul><li>Vasospasm </li></ul></ul><ul><ul><li>Pulmonary atelectasis resulting in hypoxemia </li></ul></ul><ul><ul><li>Anemia </li></ul></ul><ul><ul><li>Premature interruption of ICP-controlling medications </li></ul></ul>Artru F, Jourdan C, Perret-Liaudet A, et al. Neurol Res 1998; 20:S48–S51
  • 26. Techniques to Improve P bt O 2 <ul><li>Elevation of CPP </li></ul><ul><ul><li>Increases in Blood Volume, MAP </li></ul></ul><ul><ul><li>Decreases in ICP </li></ul></ul><ul><li>Hypertonic saline </li></ul><ul><li>Pressors </li></ul><ul><li>Sedatives </li></ul><ul><li>Barbiturates </li></ul><ul><ul><li>Independent of fx on ICP  </li></ul></ul><ul><ul><li>cerebral metabolism </li></ul></ul>Artru F, Jourdan C, Perret-Liaudet A, et al. Neurol Res 1998; 20:S48–S51 Cormio M, Gopinath SP, Valadka AB, et al. J Neurotrauma 1999; 16:927–936 Johnston AJ, Steiner LA, Coles JP, et al. Crit Care Med 2005; 33:189–195 Oddo M, Levine JM, Frangos S, et al. J Neurol Neurosurg Psych 2009; 80:916–920 Narotam PK, Morrison JF, Nathoo N J Neurosurg 2009; 111:672–682 Kiening KL, Ha¨rtl R, Unterberg AW, et al. Neurol Res 1997;19:233–240 Imberti R, Fuardo M, Bellinzona G, et al. J Neurosurg 2005; 102:455–459 Thorat JD, Wang EC, Lee KK, et al. J Clin Neurosci 2008;15: 143–148 Chen HI, Malhotra NR, Oddo M, et al. Neurosurgery 2008;63:880–997
  • 27. Techniques to Improve P bt O 2 <ul><li>Transfusion of Packed Red Blood Cells (PRBCs) </li></ul><ul><ul><li>Increases P bt O 2 </li></ul></ul><ul><ul><li>Improved oxygen-carrying capacity of the blood </li></ul></ul><ul><ul><li>Effect more prominent in the presence of higher lactate/pyruvate ratios (mitochondrial dysfunction) </li></ul></ul>Smith MJ, Stiefel MF, Magge S, et al. Crit Care Med 2005; 33:1104–1108 Leal-Noval SR, Rincon-Ferrari MD, Marin-Niebla A, et al. Intensive Care Med 2006; 32: 1733–1740 Zygun DA, Nortje J, Hutchinson PJ, et al. Crit Care Med 2009; 37:1074–1078
  • 28. Techniques to Improve P bt O 2 <ul><li>Transfusion of Packed Red Blood Cells (PRBCs) </li></ul><ul><ul><li>Increases in P bt O 2 independent of </li></ul></ul><ul><ul><ul><li>CPP changes </li></ul></ul></ul><ul><ul><ul><li>Cardiac index </li></ul></ul></ul><ul><ul><ul><li>Peripheral oxygen saturation </li></ul></ul></ul><ul><ul><ul><li>FiO 2 </li></ul></ul></ul>Artru F, Jourdan C, Perret-Liaudet A, et al. Neurol Res 1998; 20:S48–S51 Leal-Noval SR, Rincon-Ferrari MD, Marin-Niebla A, et al. Intensive Care Med 2006; 32: 1733–1740 Smith MJ, Stiefel MF, Magge S, et al. Crit Care Med 2005; 33:1104–1108
  • 29. Techniques to Improve P bt O 2 <ul><ul><li>Conflicting data exist on baseline P bt O 2 effects on improved P bt O 2 </li></ul></ul><ul><li>Age of the transfused blood products may affect efficacy (storage > 19 days) </li></ul>Leal-Noval SR, Rincon-Ferrari MD, Marin-Niebla A, et al. Intensive Care Med 2006; 32: 1733–1740 Zygun DA, Nortje J, Hutchinson PJ, et al. Crit Care Med 2009; 37:1074–1078 Weigh well-documented risks vs. the potential benefit of protection from secondary injury
  • 30. Techniques to Improve P bt O 2 <ul><li>Increasing Ventilatory FiO 2 to supranormal levels (normobaric hyperoxia) can increase P bt O 2 </li></ul><ul><li>BUT </li></ul><ul><li>May not lead to better CBF or cerebral metabolic rate of oxygen consumption </li></ul>Tolias CM, Reinert M, Seiler R, et al. J Neurosurg 2004; 101: 435–444 Nortje J, Coles JP, Timofeev I, et al. Crit Care Med 2008; 36:273–280 Diringer MN, Aiyagari V, Zazulia AR, et al. J Neurosurg 2007; 106: 526–529
  • 31. Techniques to Improve P bt O 2 <ul><li>Primary lung function can affect the cerebral oxygenation response to administration of hyperoxic challenges. </li></ul><ul><li>P a O 2 /FiO 2 ratios of 200–250 are associated with decreased cerebral oxygenation responsiveness </li></ul><ul><li>Important to determine the pulmonary status </li></ul><ul><ul><li>Monitoring of P a O 2 /FiO 2 ratios </li></ul></ul><ul><ul><li>Early diagnosis of ventilator-acquired pneumonia </li></ul></ul>Rockswold GL, Solid CA, Paredes-Andrade E, et al. Neurosurg 2009; 65:1035–1042 Rosenthal G, Hemphill JC, Sorani M, et al. Crit Care Med 2008 Jun; 36:1917–1924
  • 32. Techniques to Improve P bt O 2 <ul><li>Decompressive Hemicraniectomy </li></ul>Stiefel MF, Heuer GG, Smith MJ, et al. J Neurosurg 2004; 101:241–247 Ho CL, Wang CM, Lee KK, et al. J Neurosurg 2008; 108:943–949 Used w/ permission: William Coplin, M.D. Contralateral to Surgical Site
  • 33. Relationship to CBF <ul><li>Correlation shown with Xenon CT, CT perfusion studies, and non-invasive monitoring </li></ul><ul><li>Limitations in measurement ability </li></ul><ul><li>Non-correlated variations also occur </li></ul><ul><ul><li>Changing oxygen demands and delivery </li></ul></ul><ul><ul><li>CO 2 reactivity </li></ul></ul><ul><ul><li>Coupling/uncoupling of cerebral metabolism to CBF in patients with brain pathology </li></ul></ul>
  • 34. Oxygen Diffusion <ul><li>Impaired after brain injury </li></ul><ul><ul><li>Perivascular edema </li></ul></ul><ul><ul><li>Endothelial edema </li></ul></ul><ul><ul><li>Microvascular collapse </li></ul></ul><ul><li>Resulting in </li></ul><ul><ul><li>Impaired oxygen extraction </li></ul></ul><ul><ul><ul><li>Even with hypoperfusion (Extraction should be higher) </li></ul></ul></ul>Low P bt O 2 may be more closely related to impaired oxygen diffusion rather than oxygen delivery or metabolism. Diringer MN, Aiyagari V, Zazulia AR, et al. J Neurosurg 2007; 106: 526–529 Menon D, Coles JP, Gupta AK, et al. Crit Care Med 2004 Jun; 32: 1384–1390 Rockswold SB, Rockswold GL, Zaun DA, et al. J Neurosurg 2010; 112:1080–1094 Mannitol
  • 35. Potential Problems <ul><li>Pitfalls </li></ul><ul><li>Catheters are stable </li></ul><ul><li>Factors affecting readings: </li></ul><ul><ul><li>Calibration over first two hours </li></ul></ul><ul><ul><li>Dislodgement of catheter </li></ul></ul><ul><ul><li>Catheter breakage </li></ul></ul><ul><li>Complications </li></ul><ul><li>Complication rates are low </li></ul><ul><ul><li>Hematoma </li></ul></ul><ul><ul><li>Infection </li></ul></ul>Van Santbrink H, Maas AIR, Avezaat CJJ Neurosurgery 1996; 38: 21–31 Dings J, Meixensberger J, Roosen K J Neurological Res 1997; 19:1–5 Van den Brink WA, Van Santbrink H, Steyerberg EW, et al. Neurosurgery 2000; 46: 868–878 Anderson, RCE, Kan P, Klimo P, et al. J Neurosurg (Pediatrics 2) 101:53–58, 2004
  • 36. Assessing Physiology of Secondary Injury <ul><li>“ Global” </li></ul><ul><ul><li>ICP </li></ul></ul><ul><ul><li>CPP </li></ul></ul><ul><ul><li>CBF </li></ul></ul><ul><ul><li>S jv O 2 </li></ul></ul><ul><li>“ Regional” </li></ul><ul><ul><li>P bt O 2 </li></ul></ul><ul><ul><li>Microdialysis </li></ul></ul><ul><ul><li>PET </li></ul></ul><ul><ul><li>ECOG </li></ul></ul>
  • 37. ICP MAP CBF P bt O 2 Brain Temp Na Osm Plt PT PTT Hgb Hct ABG Gluc Microdialysis CPP SjvO 2 EEG ECOG Neurological Exam Imaging Operative Findings
  • 38. Future of Neuromonitoring <ul><li>Storage & Interpretation of Ever More Continuous Physiological Data </li></ul><ul><li>Multimodality Monitoring </li></ul><ul><li>Linkage to Events </li></ul><ul><ul><li>Movements/Transport </li></ul></ul><ul><ul><li>Imaging </li></ul></ul><ul><ul><li>Surgeries and Other Procedures </li></ul></ul><ul><ul><li>Family Visits </li></ul></ul><ul><ul><li>Nursing Care </li></ul></ul><ul><ul><ul><li>Bathing/Turning/Suctioning </li></ul></ul></ul><ul><ul><li>Drug Administration </li></ul></ul><ul><ul><li>O 2 Desaturations </li></ul></ul><ul><ul><li>Lab Derangements </li></ul></ul><ul><ul><li>Seizures </li></ul></ul><ul><li>Linkage to Examination </li></ul><ul><ul><li>GCS </li></ul></ul><ul><ul><li>Pupils </li></ul></ul><ul><li>Ultimately </li></ul><ul><li>Linkage to Outcomes Will Aid in Research and More Evidence-Driven Approaches to TBI </li></ul>Not Just ICP Control But Also Metabolism-Driven Therapy
  • 39. TBI Advisor Evidence-Based Treatments  Interventions
  • 40. Thank You [email_address]

×