Your SlideShare is downloading. ×
0
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Hartings, Jed - EcoG
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Hartings, Jed - EcoG

639

Published on

Published in: Health & Medicine
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
639
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Neuromonitoring Techniques in the NeuroICU: Jed Hartings, PhD Department of Neurosurgery University of Cincinnati [email_address] 513-558-3567 ECoG
  • 2. Electrocorticography (ECoG) ECoG = practice of using electrodes placed directly on the exposed surface of the brain to record electrical activity from the cerebral cortex <ul><li>developed in 1950’s </li></ul><ul><li>similar to EEG, but provides greater spatial resolution and higher signal-to-noise </li></ul><ul><li>used to localize epileptic foci prior to surgery in patients with intractable epilepsy </li></ul><ul><li>electrodes used for recording and stimulation to generate functional maps of cortex </li></ul><ul><li>brain-computer interfaces for neural prosthetics </li></ul><ul><li>neuromonitoring of acute brain injury </li></ul>
  • 3. Spreading depression in human cortex Strong et al., Stroke 33:2738-43, 2002
  • 4. Spreading depression in rabbit cortex
  • 5. What are spreading depolarizations? ECoG DC potential Spreading depolarizations = class of pathologic waves characterized by near-complete sustained depolarization of neurons/astrocytes that propagate through gray matter at 1-5 mm/min Sustained depolarization
  • 6. What are spreading depolarizations? Dreier JP, Nature Medicine 17(4):439-47, 2011 <ul><li>Loss of transmembrane ion gradients </li></ul><ul><li>Persistent (min’s) neuronal depolarization to -10 mV </li></ul><ul><li>Cytotoxic edema (ECV: 20%  5%) </li></ul><ul><li>BBB breakdown and vasogenic edema </li></ul><ul><li>Induction of pro-inflammatory cytokines </li></ul><ul><li>Activation of astrocytes and microglia </li></ul><ul><li>Cumulative depletion of brain glucose </li></ul>
  • 7. SD incidence in acute brain injury Traumatic brain injury: 50-60% Intracerebral hematomas: 50-60% Aneurysmal subarachnoid hemorrhage: 75% Malignant ischemic stroke: 100% &gt; 200 neurosurgical patients monitored in 12 centres (Europe and USA)
  • 8. ECoG in neurosurgical patients <ul><li>Clinical need for surgery provides opportunity to place ECoG electrodes with research consent </li></ul><ul><li>Subdural electrode strip placed on peri-lesion cortex </li></ul><ul><ul><li>Open craniotomy field or tunneled under intact dura/skull </li></ul></ul>
  • 9. Peri-lesion placement of electrode strip Pre-op Post-op
  • 10. Removal of electrode strip <ul><li>Continuous ECoG recordings during intensive care </li></ul><ul><li>Electrode strip removed at bedside by gentle traction </li></ul><ul><li>Lead wire exits craniotomy margin at bevel/burrhole to prevent snag during removal </li></ul>
  • 11. Recording requirements frequency (Hz) DC Shifts Depression (Traditional EEG Band) EEG Amplifier ECoG, 0.02 HPF attenuation 0 1
  • 12. Recording equipment Conventional Clinical EEG System Low Frequency Limit: 0.1 Hz 1 st Generation Research System ADInstruments, Inc. • Amplifier, low freq limit: 0.02 Hz • A-to-D converter • Multi-modal data: ICP, ABP, Licox
  • 13. Recording equipment
  • 14. Analysis 2 3 4 5 a b c 6 d depression period propagation velocity = 10 mm/3 min = 3.3 mm/min
  • 15. 1 sec
  • 16. 5 min
  • 17. Clinical relevance: SAH and stroke
  • 18. Clinical relevance: TBI <ul><li>103 patients monitored for 72 hr (quartiles: 40,102) </li></ul><ul><li>surgery at 10 hr post-trauma (quartiles: 5, 26) </li></ul><ul><li>SD observed in 58 of 103 patients monitored (56%) </li></ul><ul><li>total of 1,328 depolarizations (average: 23 / patient; range: 1-100+) </li></ul>500 μ V 1 mV 60 20 mm Hg ICP HF-ECoG LF-ECoG 8 hr a b c a b c
  • 19. SD and ICP Spreading Depolarizations Hartings et al., J Neurotrauma 26:1857-66, 2009 O’Phelan et al., Neurocrit Care 10:280-6, 2009
  • 20. SD associated with hypotension, fever Hartings et al., J Neurotrauma 26:1857-66, 2009 280 SD in 17 of 32 (53%) patients
  • 21. TBI case example rCBF (ml/100g/min) Brain temp ( ° C) depolarizations 0 2 4 6 8 Days post-TBI Licox P br O 2 &gt; 20 mm Hg throughout ICP &lt; 20 mm Hg throughout GCS: 7T  10T hypovolemic shock metabolic acidosis hyponatremia
  • 22. tSAH is a risk factor for spreading depolarizations Fisher Scale Morris-Marshall Scale Depolarization Incidence (%) 4/17 13/26 8/10 4/16 5/12 16/25 p=0.01; χ 2 p=0.04; χ 2 No significant association with status of basal cisterns, midline shift, parenchymal lesions, subdural hemorrhage, or Rotterdam score.
  • 23. SD and cerebral microdialysis Days post-trauma μ M SD (n=8) no SD (n=10) glutamate LPR
  • 24. Seizures and spreading depolarizations Fabricius et al., Clin Neurophysiol 119:1973-1984, 2008
  • 25. Seizures and spreading depolarizations 10 min 4 m V 1 sec 1000 μ V
  • 26. ECoG-detected seizures are often focal 10 min 500 μ V
  • 27. Sensitive seizure detection with ECoG
  • 28. Depolarizations are independently associated with poor outcomes *p=0.26 ^p&lt;0.001 Multivariate ordinal regression analysis † based on age, GCS motor score, pupils, hypoxia, hypotension, tSAH, Marshall CT category Estimated common odds ratio 95% confidence interval p-value Prognostic Score † 1.76 1.26 to 2.46 &lt;0.001 Depolarization None 1.0 reference &lt;0.001 CSD 1.56* 0.72 to 3.37 ISD 7.58^ 2.64 to 21.8
  • 29. The Future? Smart catheter : CSF drainage Glucose Lactate Oxygen Temperature Pressure CBF ECoG
  • 30. Summary <ul><li>ECoG is a novel modality to monitor TBI patients </li></ul><ul><li>Currently, it is only a research tool to monitor spreading depolarizations </li></ul><ul><li>The only method to monitor a mechanism of evolving cortical pathology </li></ul><ul><li>Depolarizations are associated with fever, hypotension, high ICP, and worse outcome in human TBI </li></ul><ul><li>Promising method for real-time monitoring to guide treatments tailored to individual patients; automated methods for data processing and interpretation are needed </li></ul><ul><li>Electrode strips are limited to patients requiring surgery; depth electrodes and μECoG are options for non-surgical TBI </li></ul>
  • 31. Acknowledgments COSBID-Europe Anthony Strong – London Martin Fabricius – Copenhagen Martin Lauritzen – Copenhagen Jens Dreier – Berlin Rudolf Graf – Cologne Johannes Woitzik – Berlin Oliver Sakowitz – Heidelberg COSBID-USA Ross Bullock - Miami David Okonkwo – Pittsburgh Bruce Mathern – Virginia Lori Shutter – Cincinnati Adam Wilson - Cincinnati COSBID

×