Multi-base-station Sensor Network Hybrid MAC & Route protocol  <ul><li>Jian-chuan Lu </li></ul><ul><li>visiting scholar </...
Outline of Topics <ul><li>Network architecture and hybrid protocol  </li></ul><ul><li>Key issues </li></ul><ul><li>Route b...
Hybrid multi-base-station architecture
Hybrid type station , hybrid protocol <ul><li>s ensor synchronize to basestation </li></ul><ul><li>5 phase network  self-o...
Key problems <ul><li>Route based on S/N   </li></ul><ul><li>Time delay and overhead of network self-organization </li></ul...
Route based on S/N   <ul><li>S/N based route choice for intra-cluster uplink communication </li></ul><ul><li>the value of ...
Route based on S/N <ul><li>Log-normal-shadowing model </li></ul><ul><li>Pr=Po-10n* log(r/ro)+X </li></ul><ul><li>How to gu...
network self-organization <ul><ul><li>The completion of networking self-organization means : </li></ul></ul><ul><ul><ul><u...
Measurements to reduce network  organization delay <ul><ul><li>Improved CSMA/CA, give MNT related packets high priority; <...
CSMA/CA with priority <ul><li>Purpose of CSMA with priority </li></ul><ul><li>.Reduce delay for high priority traffic </li...
Outward nodes first  Monitor channel Analysis packets type and source/destination Case: RequestRegiste from outwards node ...
Dissemination of MNT  <ul><li>After receive a MNT packet, node retransmits it immediately. MNT traverses through one subne...
Problems related to base-station mobility <ul><li>Base-station moving may cause : </li></ul><ul><li>1 st  hop node can’t r...
Problems related to base-station mobility <ul><li>Solution for : </li></ul><ul><li>Problem 1): </li></ul><ul><li>Store the...
Performance simulation metrics <ul><li>Time performance: </li></ul><ul><li>network organization time; </li></ul><ul><li>ro...
Further research <ul><li>Protocol simulation, emulation, and implementation </li></ul><ul><li>Theory analysis and modeling...
RTS/CTS 4 way handshake access method <ul><li>Channel access using RTS/CTS </li></ul>DIFS RTS CTS DATA ACK SIFS SIFS SIFS ...
Multi mode communication   requirement Node Broadcast to all Neighbors Node to Specific Neighbor User Broadcast to all Nod...
Sensor network characteristics <ul><li>Low power consumption </li></ul><ul><li>Low bandwidth, single channel and short ran...
Upcoming SlideShare
Loading in...5
×

Multi-base-station Sensor Network Hybrid MAC and Routing protocol

624

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
624
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
17
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Multi-base-station Sensor Network Hybrid MAC and Routing protocol"

  1. 1. Multi-base-station Sensor Network Hybrid MAC & Route protocol <ul><li>Jian-chuan Lu </li></ul><ul><li>visiting scholar </li></ul><ul><li>DAWN Lab </li></ul><ul><li>EECS of Washington State University </li></ul><ul><li>19 th January 2001 </li></ul>
  2. 2. Outline of Topics <ul><li>Network architecture and hybrid protocol </li></ul><ul><li>Key issues </li></ul><ul><li>Route based on S/N </li></ul><ul><li>Time delay and overhead of network self-organization </li></ul><ul><li>Problems related to base-station mobility </li></ul><ul><li>Performance simulation metrics </li></ul><ul><li>Further research </li></ul>
  3. 3. Hybrid multi-base-station architecture
  4. 4. Hybrid type station , hybrid protocol <ul><li>s ensor synchronize to basestation </li></ul><ul><li>5 phase network self-organization </li></ul><ul><li>topology discovery,& adaptation </li></ul><ul><li>Hybrid TDMA/CSMA </li></ul><ul><li>Downlink,direct TDMA broadcast </li></ul><ul><li>Uplink, multi-hop CSMA with priority </li></ul><ul><li>Sensor broadcast 1 time/superframe </li></ul><ul><li>to discovery neighbor, basestation </li></ul><ul><li>need to know all of it’s member sensor </li></ul><ul><li>node but not their connection relation </li></ul><ul><li>Basetation acts as a local switch center </li></ul><ul><li>each packet to local sensor node must </li></ul><ul><li>pass through it </li></ul><ul><li>Inter-cluster communication through </li></ul><ul><li>relay of gateway sensor nodes </li></ul><ul><li>Uplink route based on S/N value measured </li></ul><ul><li>by sensor node </li></ul><ul><li>Can adapt to basestation mobility </li></ul><ul><li>Support multi mode communication </li></ul><ul><li>requirement </li></ul>
  5. 5. Key problems <ul><li>Route based on S/N </li></ul><ul><li>Time delay and overhead of network self-organization </li></ul><ul><li>Problems related to base-station mobility </li></ul>
  6. 6. Route based on S/N <ul><li>S/N based route choice for intra-cluster uplink communication </li></ul><ul><li>the value of S/N indicate the relative distance between base-station and sensor node; </li></ul><ul><li>by choice the node of larger S/N as next hop will hopefully finally transfer data packets to base-station. </li></ul><ul><li>Limitation and precondition: </li></ul><ul><li>Signal strength irregular variation as distance: multipath, fading, scattering, shadowing; </li></ul><ul><li>Measure accuracy: long enough measure time, average of multiple measurement; </li></ul><ul><li>Effectiveness of S/N due to base-station mobility: periodically update, 1update/superframe(1 minute). Multiple measurement during receiving/monitoring downlink signal </li></ul><ul><li>HOW to cope with random signal level variation and fading? </li></ul>
  7. 7. Route based on S/N <ul><li>Log-normal-shadowing model </li></ul><ul><li>Pr=Po-10n* log(r/ro)+X </li></ul><ul><li>How to guarantee to choice </li></ul><ul><li>right next hop node? </li></ul><ul><li>assume: </li></ul><ul><li>S th : Minimum S/N resolution </li></ul><ul><li>D max: maxim sensor Tx distance </li></ul><ul><li>n: RF signal propagation factor </li></ul><ul><li>a: signal level variance </li></ul><ul><li>then ,probability of right choice is: </li></ul><ul><li>(choice the node more near to FaN as next hop) </li></ul><ul><li>Q(2(S th -10n*logD max )/a) </li></ul>
  8. 8. network self-organization <ul><ul><li>The completion of networking self-organization means : </li></ul></ul><ul><ul><ul><ul><ul><li>every sensor node knows it’s NCT; </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>every FaN know it’s MNT and other FaN’s MNT </li></ul></ul></ul></ul></ul><ul><ul><li>At the end of sensor node broadcast phase, every sensor node should form it’s NCT; </li></ul></ul><ul><ul><li>Key time delay is for MNT construction and dissemination (to whole network range) </li></ul></ul>
  9. 9. Measurements to reduce network organization delay <ul><ul><li>Improved CSMA/CA, give MNT related packets high priority; </li></ul></ul><ul><ul><li>Reduce possible collision, let nodes of lower S/N transmit first. </li></ul></ul><ul><ul><li>Each node monitor and wait all it’s neighbor nodes’ packets, </li></ul></ul><ul><ul><li>only after all of it’s neighbor of lower S/N have sent their </li></ul></ul><ul><ul><li>RequestRegiste packet, this node start to contend channel. </li></ul></ul><ul><ul><li>The direct effects of this algorithm are: </li></ul></ul><ul><ul><li>reduce possible collision; </li></ul></ul><ul><ul><li>reduce transmission times of intermediate node to relay other nodes packets, </li></ul></ul><ul><ul><li>each node only need to transmit one time ; </li></ul></ul><ul><ul><li>increase channel utilization. </li></ul></ul>
  10. 10. CSMA/CA with priority <ul><li>Purpose of CSMA with priority </li></ul><ul><li>.Reduce delay for high priority traffic </li></ul><ul><li>.Stagger channel contending window to reduce collision </li></ul>1 2 3 4 DIFS 0~4 4~8 8~12 12~16
  11. 11. Outward nodes first Monitor channel Analysis packets type and source/destination Case: RequestRegiste from outwards node Case:MNT to me Case:application data Add to Request node list All outward nodes issued RequeseRegist packet ? Contend channel for transfer To inward node yes no 1 2 1 2 3 4 5 4 5 3 4 5 2 3 2 3 4 <ul><li>Guarantee FaN get it’s MNT in less than one uplink frame:2s </li></ul>
  12. 12. Dissemination of MNT <ul><li>After receive a MNT packet, node retransmits it immediately. MNT traverses through one subnet need at least one downlink frame (1s) and one uplink frame(2s) </li></ul>
  13. 13. Problems related to base-station mobility <ul><li>Base-station moving may cause : </li></ul><ul><li>1 st hop node can’t reach basestation directly; </li></ul><ul><li>Gateway node can’t receive downlink packets; </li></ul><ul><li>Some node can’t receive downlink packets. </li></ul>
  14. 14. Problems related to base-station mobility <ul><li>Solution for : </li></ul><ul><li>Problem 1): </li></ul><ul><li>Store the packets received until next superframe, then transmit them to it’s new inward node. Maximum time delay=1 superframe </li></ul><ul><li>Problem 2): </li></ul><ul><li>Active response: Gateway node monitor basestation’s signal, once it’s S/N is lower than threshold value, inform basestation; </li></ul><ul><li>Passive response: basestation can’t receive ACK in the preceding uplink frame after it transmits a packet to Gateway node. </li></ul><ul><li>After discover Gateway node can’t reach, basestation start to poll other candidate Gateway nodes in the downlink frame, which have suitable S/N value pair . </li></ul><ul><li>Once received polling message, these nodes monitor another subnet’s signal, if it’s S/N>threshold, then it response to polling and start to issue NeighborFinding packet. Time to spend about 6s </li></ul><ul><li>Problem 3): </li></ul><ul><li>Just retransmit them in the next superframe if there is no ACK received. </li></ul>
  15. 15. Performance simulation metrics <ul><li>Time performance: </li></ul><ul><li>network organization time; </li></ul><ul><li>route table update delay:NCT, MNT </li></ul><ul><li>data packets average transmission delay: multi hop, multi round </li></ul><ul><li>CSMA with priority : Delay performance analysis, how many delay gains </li></ul><ul><li>can be obtained for high priority packets? How the low priority traffic be suffered? </li></ul><ul><li>Throughput performance: </li></ul><ul><li>overhead calculate </li></ul><ul><li>channel utility efficient </li></ul><ul><li>maxim simultaneous transmission packets </li></ul><ul><li>Energy performance: </li></ul><ul><li>life time </li></ul><ul><li>number of packets transmitted/energy </li></ul><ul><li>Parameter optimization: </li></ul><ul><li>eg. Back-off time, </li></ul><ul><li>Comparative analysis with other protocol </li></ul>
  16. 16. Further research <ul><li>Protocol simulation, emulation, and implementation </li></ul><ul><li>Theory analysis and modeling </li></ul><ul><li>Improve energy conserving </li></ul><ul><li>Combination with rendezvous protocol </li></ul>
  17. 17. RTS/CTS 4 way handshake access method <ul><li>Channel access using RTS/CTS </li></ul>DIFS RTS CTS DATA ACK SIFS SIFS SIFS DIFS Contention Window Defer Access NAV(RTS) NAV(CTS) SRC DEST OTHER
  18. 18. Multi mode communication requirement Node Broadcast to all Neighbors Node to Specific Neighbor User Broadcast to all Nodes User to Specific Node Node to User Multicast among Set of Nodes (e.g., corroborate) User or LRP
  19. 19. Sensor network characteristics <ul><li>Low power consumption </li></ul><ul><li>Low bandwidth, single channel and short range </li></ul><ul><li>Periodic with low or high duty cycle </li></ul><ul><li>Mostly send and route network </li></ul><ul><li>Small packet and no streaming </li></ul><ul><li>A dynamic network </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×