Límites

5,215 views
5,160 views

Published on

Published in: Education
2 Comments
2 Likes
Statistics
Notes
No Downloads
Views
Total views
5,215
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
177
Comments
2
Likes
2
Embeds 0
No embeds

No notes for slide

Límites

  1. 1. Moisés Villena Muñoz Cap. 1 Límites de Funciones 1 1.1 LÍMITE EN UN PUNTO 1.2 LÍMITES LATERALES 1.3 TEOREMAS SOBRE LÍMITES 1.4 CÁLCULO DE LÍMITES 1.5 LÍMITES AL INFINITO 1.6 LÍMITES INFINITOS 1.7 OTROS LÍMITES OBJETIVOS: • Definir Límites. • Realizar demostraciones formales de límites. • Describir gráficamente los límites. • Calcular límites. 1
  2. 2. Moisés Villena Muñoz Cap. 1 Límites de Funciones1.1 LÍMITE EN UN PUNTO El Cálculo, básicamente está fundamentado en los límites, por tanto estetema es trascendental para nuestro estudio. De hecho, veremos más adelanteque los dos conceptos principales del Calculo, la Derivada y la IntegralDefinida, están basados en límites. Conceptualizar límites determinando el comportamiento de una función einterpretarlo en su gráfica, ayudará bastante en el inicio de nuestro estudio. 1.1.1 DEFINICIÓN INTUITIVA Ciertas funciones de variable real presentan un comportamiento un tantosingular en la cercanía de un punto, precisar sus características es nuestraintención y el estudio de los límites va a permitir esto. Empecemos analizando ejemplos sencillos; en los que podamos por simpleinspección concluir y tener una idea del concepto de límite. Ejemplo 1 Veamos como se comporta la función f con regla de correspondencia f ( x) = 2 x + 1 en la cercanía de x = 2 . Evaluando la función para algunos valores de x , próximos (acercándose) a 2 : x y = 2x + 1 1.90 4.80 1.95 4.90 1.99 4.98 2.01 5.02 2.05 5.10 2.10 5.20 En la tabla de valores se han ubicado unas flechas para dar a entender que tomamos a la x aproximándose a 2 en ambas direcciones y se observa que los valores de y se van acercando a 5. Aunque son sólo seis valores, por ahora sin ponernos exigentes vamos a concluir diciendo que la función se aproxima a 5 cada vez que su variable independiente x se aproxima a 2. Este comportamiento lo escribiremos de la siguiente forma: lím (2 x + 1) = 5 x→2 Lo anterior se puede ilustrar desde la gráfica, observe la figura 1.1: Fig. 1.12
  3. 3. Moisés Villena Muñoz Cap. 1 Límites de Funciones Ejemplo 2 Ahora veamos el comportamiento de esta otra función f con regla de correspondencia x 2 + 5x − 6 f ( x) = , en la cercanía de x = 1 . x −1 Evaluando la función para ciertos valores de x , cada vez más próximos a 1, tenemos: x2 + 5x − 6 x y= x −1 0.90 6.90 0.95 6.95 0.99 6.99 1.01 7.01 1.05 7.05 1.10 7.10 Parece ser que esta función se aproxima a tomar el valor de 7 cada vez que la variable independiente x x 2 + 5x − 6 se aproxima a tomar el valor de 1, es decir lím =7. x →1 x −1 Note que no es necesario que la función esté definida en el punto de aproximación. x 2 + 5x − 6 Por otro lado, la regla de correspondencia f ( x) = es equivalente a x −1 f ( x) = x + 6 ; x ≠ 1 (¿POR QUÉ?). Este comportamiento se lo puede visualizar desde su gráfica, observe la figura 1.2: Fig. 1.2 De lo expuesto en los dos ejemplos anteriores, sin ser tan riguroso todavía,podemos emitir la siguiente definición: 3
  4. 4. Moisés Villena Muñoz Cap. 1 Límites de Funciones Una función f tiene límite L en un punto x0 , si f se aproxima a tomar el valor L cada vez que su variable x se aproxima a tomar el valor x0 . Esto se denota como: lím f ( x) = L x→ x0 Para los dos ejemplos anteriores el comportamiento de las funciones sepuede determinar analizando sus gráficas; pero esto podría ser no tan sencillo;es más, suponga que se necesite bosquejar la gráfica teniendo característicasde su comportamiento. De ahí la necesidad del estudio de límite de funciones. 1.1.2 DEFINICIÓN FORMAL Suponga que se plantea el problema de demostrar que lím 2 x + 1 = 5 o que x →2 x + 5x − 6 2lím = 7. Para esto, debemos garantizar formalmente elx →1 x −1acercamiento que tiene la función a su correspondiente valor cada vez que suvariable independiente se aproxime al valor especificado. Ya la tabla de valoresno nos sirve, el hecho que se cumpla para algunos valores no indica que secumpla para todos los valores próximos al punto. La demostración consistiráen escribir matemáticamente, lenguaje formal, la metodología del proceso, locual nos lleva a la necesidad de tener una definición formal de límite y no sólopara estos dos ejemplos, sino para cualquier función. Antes, de llegar a la definición requerida, precisemos lo siguiente: PRIMERO, para un lenguaje formal, decir que x toma valores próximos a unpunto x0 (que x está en torno a x0 ), bastará con considerarla perteneciente aun intervalo o vecindad, centrado en x0 , de semiamplitud muy pequeña, lacual denotaremos con la letra griega ∂ (delta). Es decir: x0 − ∂ < x < x 0 + ∂ Transformando la expresión anterior tenemos: x0 − ∂ < x < x0 + ∂ x0 − ∂ − x0 < x − x0 < x0 + ∂ − x0 Restando " x0 " − δ < x − x0 < δ Empleando la definición x − x0 < δ de valor absoluto4
  5. 5. Moisés Villena Muñoz Cap. 1 Límites de Funciones Y, para que x no sea x0 , bastará con proponer que 0 < x − x0 < ∂ ¿PORQUÉ?. SEGUNDO, para decir que f está próxima a L (en torno a L ), podemosexpresar que pertenece a un intervalo o vecindad, centrado en L desemiamplitud muy pequeña, la cual denotaremos con la letra griega ε(épsilon). Es decir: L − ε < f ( x) < L + ε Transformando la expresión anterior tenemos: L − ε < f ( x) < L + ε − ε < f ( x ) − L < +ε Restando " L " f ( x) − L < ε Aplicando la definición de valor absoluto Con todo lo anterior, definimos formalmente límite de una función en unpunto, de la siguiente manera: Sea f una función de variable real y sean ε y ∂ cantidades positivas muy pequeñas. Suponga que f se aproxima a L cuando x se aproxima a x0 , denotado como lím f ( x) = L , esto x→ x0 significa que para toda proximidad que se desee estar con f en torno a L , deberá poderse definir un intervalo en torno a x0 en el cual tomar x , sin que necesariamente x = x0 , que nos garantice el acercamiento. Es decir: ( lím f ( x) = L ) ≡ ∀ε > 0, ∃δ > 0 tal que 0 < x − x x → x0 0 < δ ⇒ f ( x) − L < ε La definición indica que para asegurar que una función tiene límitedeberíamos establecer una relación entre ∂ y ε . Una manera de interpretar gráficamente lo mencionado es: 5
  6. 6. Moisés Villena Muñoz Cap. 1 Límites de Funciones Fig. 1.3 Con esta definición, ya podemos realizar demostraciones formales. Ejemplo 1 Demostrar formalmente que lím (2 x + 1) = 5 . x →2 SOLUCIÓN: Cuando hicimos la tabla de valores, sólo para seis valores percibimos que el límite de esta función era 5, se trata ahora de demostrarlo. Debemos garantizar que cuando tomemos a la x como cualquier número cercano a 2 el valor de y correspondiente es un número cercano a 5, y mientras la x esté más cerca de 2 la y estará más cerca de 5; esto quiere decir que la diferencia entre los valores que resultan en 2 x + 1 con 5 deberán ser cantidades muy pequeñas, menores que cualquiera tolerancia ε que nos fijemos. Es decir, que debemos poder estar tan cerca de 5 con y = 2 x + 1 , tanto como nos propusiéramos estar (para todo ε ). Si esto es posible deberá poderse definir el correspondiente intervalo (existe ∂ ) en el cual tomar x que garantice aquello, es decir: ∀ε > 0, ∃δ > 0 tal que 0 < x − 2 < δ ⇒ (2 x + 1) − 5 < ε En la implicación, vamos a transformar el antecedente hasta llevarlo a la forma del consecuente. Observe el consecuente, su forma algebraica nos guiará en el procedimiento a seguir: (0 < x−2 <δ ) ⇒ 0 < 2 x − 2 < 2δ Multiplicamos por 2 (porque en el consecuente aparece 2x ) ⇒ 0 < 2 x − 2 < 2δ ⇒ 0 < 2 ( x − 2 ) < 2δ Propiedades del valor absoluto ⇒ 0 < 2 x − 4 < 2δ Sumamos y restamos 5 (debido a que ⇒ 0 < 2 x − 4 + 5 − 5 < 2δ aparece -5 en el consecuente) ⇒ 0 < ( 2 x + 1) − 5 < 2δ Agrupamos ε Ahora, podemos decir que δ = sirve (puede ser un valor menor); es decir, que si tomamos 2 2 − ε < x < 2 + ε nos permite asegurar lo propuesto. 2 2 Suponga que ε = 0.1 ; es decir, si quisiéramos que y = 2 x + 1 esté a menos de 0.1 de 5, será posible si 0.1 tomamos a la que x , en torno a 2 a una distancia no mayor de δ = = 0.05 . Es decir para que f 2 esté entre 4.9 y 5.1 bastará con tomar a la x un número entre 1.95 y 2.05.6
  7. 7. Moisés Villena Muñoz Cap. 1 Límites de Funciones No olvide que proponer una relación entre ε y ∂ , garantiza que f estará tan cerca de L , como se 0.01 quiera estar. Veamos, más cerca ε = 0.01 , bastará con tomar a la x a no menos de δ = = 0.005 2 de 2. Es decir que si tomamos 1.995 < x < 2.005 garantiza que 4.99 < f ( x) < 5.01 . Ejemplo 2 x2 + 5x − 6 Demostrar formalmente que lím =7. x →1 x −1 SOLUCIÓN: x2 + 5x − 6 Debemos asegurar que y = se aproxima a tomar el valor de 7 cada vez que la x esté x −1 x2 + 5x − 6 próxima de 1. Es decir, que debemos poder estar tan cerca de 7 con y = , tanto como nos x −1 propusiéramos estar (para todo ε ). Si esto es posible deberá poderse definir el correspondiente intervalo (existe ∂ ) en el cual tomar x que garantice aquello, es decir: x 2 + 5x − 6 ∀ε > 0, ∃δ > 0 tal que 0 < x − 1 < δ ⇒ −7 <ε x −1 Ahora transformamos el antecedente: Sumamos y restamos 7 (debido a que (0 < x −1 < δ ) ⇒ 0 < x −1+ 7 − 7 < δ aparece -7 en el consecuente) ⇒ 0 < ( x + 6) − 7 < δ Agrupamos ( x + 6 ) y la ⇒ ( x + 6 )( x − 1) − 7 <∂ dividimos y multiplicamos por ( x − 1) x −1 (debido a que el primer término del consecuente x2 + 5x − 6 aparece dividido por ( x − 1) ) ⇒ −7 <∂ x −1 Con δ = ε , aseguramos lo propuesto; es decir, tomando 1 − ε < x < 1 + ε . Ejemplo 3 Demostrar formalmente que lím x 2 = 4 . x→2 SOLUCION: Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0< x−2 <δ ⇒ x2 − 4 < ε Entonces: Multiplicamos por x + 2 (debido a que (0 < x−2 <δ)⇒0< x−2 x+2 <δ x+2 el consecuente tiene una diferencia de ⇒ 0 < ( x − 2 )( x + 2 ) < δ x + 2 cuadrados perfectos) Aplicamos la propiedad del producto ⇒ 0 < x2 − 4 < δ x + 2 del valor absoluto Ahora acotemos x + 2 . Exijamonos ∂ ≤ 1 , esto quiere decir que la x estaría a una distancia no mayor de 1, en torno a 2, es decir 1 ≤ x ≤ 3 , lo cual implica que: 2≤ x+2≤5⇒ x+2 ≤5 El último resultado implica que: ∂ x + 2 ≤ 5∂ 7
  8. 8. Moisés Villena Muñoz Cap. 1 Límites de Funciones Continuando con la demostración: x 2 − 4 < δ x + 2 ≤ 5∂ ⇒ x 2 − 4 < 5∂ ε ε ε Por tanto, δ = sirve; es decir, al considerar 2 − < x<2+ aseguramos lo que se quiere 5 5 5 ⎧ ε⎫ demostrar, siempre y cuando escojamos un ε tal que ∂ ≤ 1 , es decir δ = min ⎨1 , ⎬ (el menor entre ⎩ 5⎭ ε 1y ). 5 Ejemplo 4 Demostrar formalmente que lím x 2 = 9 . x →−3 SOLUCION: Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0< x+3 <δ ⇒ x2 − 9 < ε Por lo tanto: Multiplicamos por x − 3 (debido a que el consecuente (0 < x+3 <δ)⇒ 0< x+3 x−3 <δ x−3 tiene una diferencia de cuadrados perfectos) ⇒ 0 < ( x + 3)( x − 3) < δ x − 3 Aplicamos la propiedad del producto ⇒ 0 < x2 − 9 < δ x − 3 del valor absoluto Acotamos x − 3 . Si nos proponemos un ∂ ≤ 1 , entonces −4 ≤ x ≤ −2 , lo cual implica que: −4 − 3 ≤ x − 3 ≤ −2 − 3 ⇒ − 7 ≤ x − 3 ≤ −5 ⇒ x −3 ≤ 7 ⇒ ∂ x − 3 ≤ 7∂ Entonces: x 2 − 9 < δ x − 3 ≤ 7∂ ⇒ x 2 − 9 < 7∂ ε ε ε Por tanto, δ = sirve; es decir tomar −3 − < x < −3 + asegura lo que se quiere demostrar, 7 7 7 ⎧ ε⎫ siempre y cuando escojamos un ε tal que ∂ ≤ 1 , es decir δ = min ⎨1 , ⎬ . ⎩ 7⎭ Ejemplo 5 Demostrar formalmente que lím x = 2 . x →4 SOLUCION: Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0< x−4 <δ ⇒ x −2 <ε entonces: (0 < x−4 <δ)⇒ 0< ( x −2 )( x +2 <δ ) Factorizamos x − 4 para diferencia de cuadrados ⇒0< ( x −2 ) x +2 <δ Aplicamos la propiedad del producto del valor absoluto 1 ⇒0< x −2 <δ Despejamos x +28
  9. 9. Moisés Villena Muñoz Cap. 1 Límites de Funciones 1 Acotamos . Igual a los casos anteriores, consideramos ∂ ≤ 1 ; es decir debemos tomar a x a x +2 una distancia no mayor de 1 entorno a 4, entonces 3 ≤ x ≤ 5 , esto implica que: 3≤ x≤ 5 ⇒ 3+2≤ x +2≤ 5+2 1 1 1 ⇒ ≥ ≥ 3+2 x +2 5+2 1 1 ⇒ ≤ x +2 3+2 ∂ ∂ ⇒ ≤ x +2 3+2 Entonces: 1 ∂ ∂ x −2 <δ ≤ ⇒ x −2 < x +2 3+2 3+2 ( ) Por lo tanto, δ = ε 3 + 2 ; es decir, si tomamos 4 − ε 3 + 2 < x < 4 + ε 3 + 2 aseguramos lo ( ) ( ) que se quiere demostrar, siempre y cuando escojamos un ε tal que ∂ ≤ 1 , es decir { ( δ = min 1 , ε 3+2 )} Ejemplo 6 Demostrar formalmente que lím 3 x = 3 . x → 27 SOLUCION: Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0 < x − 27 < δ ⇒ 3 x −3 < ε Entonces: Factorizamos ( x − 27 ) (0 < )⇒0< ( x − 3 27 ⎛ ) ( x) ( ) 27 ⎞ < δ 2 2 x − 27 < δ 3 ⎜ 3 + 3 x 3 27 + 3 ⎟ ⎝ ⎠ para diferencia de cubos ( ) ( x) ⎛ + 3 x + 9⎞ < δ 2 ⇒0< 3 x −3 ⎜ 3 3 ⎟ Propiedad del valor absoluto ⎝ ⎠ δ ⇒0< ( 3 x −3 < ) Despejamos ⎛ ( x) + 3 x + 9⎞ 2 ⎜ ⎟ 3 3 ⎝ ⎠ 1 Ahora bien, acotamos . Si tomamos a x a una distancia no mayor de 1 ( ∂ ≤ 1) , ⎛ ( x) + 33 x + 9 ⎞ 2 ⎜ ⎟ 3 ⎝ ⎠ en torno a 27, entonces 26 ≤ x ≤ 28 , esto implica que: Primero sacamos raíz cúbica, luego multiplicamos por 3 y finalmente sumamos 9 9
  10. 10. Moisés Villena Muñoz Cap. 1 Límites de Funciones ⎧3 3 26 + 9 ≤ 3 3 x + 9 ≤ 3 3 28 + 9 ⎪ 26 ≤ x ≤ 28 ⇒ ⎨ ( ) ( ) ( ) Por otro lado sacamos raíz 2 2 2 ⎪ 26 ≤ x ≤ 28 3 3 3 ⎩ cúbica y elevamos al cuadrado ( 26 ) + 3 26 + 9 ≤ ( x ) + 3 ( ) 2 2 2 ⇒ 3 3 3 3 x +9≤ 3 28 + 3 3 28 + 9 1 1 1 ⇒ ≥ ≥ ( ) ( ) ( ) 2 2 2 3 26 + 3 3 26 + 9 3 x + 33 x + 9 3 28 + 3 3 28 + 9 1 1 ⇒ ≤ ( x) ( ) 2 2 3 + 33 x + 9 3 26 + 3 3 26 + 9 ∂ ∂ ⇒ ≤ ( x) ( ) 2 2 3 +3 x +9 3 3 26 + 3 3 26 + 9 Entonces: δ ∂ ∂ ( 3 ) x −3 < ≤ ⇒ ( 3 x −3 < ) ⎛ ( x) + 3 x + 9⎞ ( ) ( ) 2 2 2 ⎜ 3 3 ⎟ 3 26 + 3 26 + 9 3 3 26 + 3 3 26 + 9 ⎝ ⎠ Por lo tanto, δ = ε ⎛ ( ) + 3 3 26 + 9 ⎞ ; es decir, si tomamos 2 ⎜ ⎟ 3 26 ⎝ ⎠ 27 − ε ⎛ ( ) + 3 3 26 + 9 ⎞ < x < 27 + ε ⎛ ( ) + 3 3 26 + 9 ⎞ aseguramos lo propuesto siempre y 2 2 ⎜ ⎟ ⎜ ⎟ 3 3 26 26 ⎝ ⎠ ⎝ ⎠ cuando escojamos un ε tal que ∂ ≤ 1 , es decir δ = min 1 , ⎛ ⎜ ⎝ { ( 3 26 ) 2 + 3 3 26 + 9 ⎞ ε ⎟ ⎠ } Ejemplo 7 Demostrar formalmente que lím x − 1 = 1 . x →1 x −1 2 SOLUCION: x −1 1 Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0 < x −1 < δ ⇒ − <ε x −1 2 La expresión algebraica del consecuente tiene una apariencia un tanto compleja, por tanto en este caso es mejor empezar analizando el consecuente, para tener referencia de los pasos a seguir para luego transformar el antecedente. x −1 1 − <ε x −1 2 ( x −1 ) 1 <ε Factorizamos el denominador − ( x − 1) para diferencia de cuadrados ( x −1 )( x +1 ) 2 ( ) 1 1 − <ε Simplificamos x −1 ( x +1 ) 2 2− ( x +1 ) <ε Restamos 2 ( x +1 ) 2 − x −1 <ε 2 ( x +1 ) Propiedad distributiva10
  11. 11. Moisés Villena Muñoz Cap. 1 Límites de Funciones 1− x <ε 2 ( x + 1) Resolvemos la resta del 2 con el 1 (1 − x )(1 + x ) < ε 2 ( x + 1)(1 + x ) ( Multiplicamos y dividimos por 1 + x ) 1− x <ε Producto notable ( ) 2 2 x +1 1− x Aplicamos la propiedad del cociente <ε ( ) del valor absoluto 2 2 x +1 1 − x < ε ⎡2 x + 1 ⎤ ( ) 2 Despejamos ⎢ ⎣ ⎥ ⎦ Ahora para transformar el antecedente, se sigue una secuencia como la anterior pero desde el final: (0 < x −1 < δ ) ⇒ 0 < 1− x < δ Propiedad del valor absoluto ( ⇒ 0 < 1− x 1+ x < δ )( ) Factorizamos para diferencia de cuadrados δ ⇒ 0 < 1− x < Despejamos 1+ x 1− x δ ⇒0< < Dividimos todos los términos ( 2 1+ x ) 2 1+ x 1+ x ( ) entre 2 (1 + x ) 1− x δ ⇒0< < ( 2 1+ x ) ( 2 1+ x ) 2 2 − x −1 δ ⇒0< < Transformamos el 1 en (2 – 1) ( 2 1+ x ) ( 2 1+ x ) 2 ⇒0< 2− ( x +1 )< δ Agrupamos 2 1+ x ( ) ( 2 1+ x ) 2 ⇒0< 2 ( x + 1) < δ − Separamos en dos términos 2 1+( x ) 2 (1 + x ) 2 (1 + x ) 2 1 1 δ ⇒0< − < Simplificamos (1 + x ) 2 2 (1 + x ) 2 ⇒0< ( x − 1) − 1 < δ (1 + x )( x − 1) 2 2 (1 + x ) 2 Multiplicamos por la conjugada el primer término ⇒0< ( x − 1) − 1 < δ x −1 ( ) 2 2 2 1+ x 1 Acotamos . Ahora bien, si tomamos a x a una distancia no mayor de 1, entorno a 1, ( ) 2 2 1+ x entonces 0 ≤ x ≤ 2 , esto implica que: 11
  12. 12. Moisés Villena Muñoz Cap. 1 Límites de Funciones 0 ≤ x ≤ 2 ⇒ 1≤ x +1≤ 2 +1 ( ) ( 2 + 1) 2 2 ⇒ 1≤ x +1 ≤ 2 ≤ 2 ( x + 1) ≤ 2 ( 2 + 1) 2 2 ⇒ 1 1 1 ⇒ ≥ ≥ ( ) ( ) 2 2 2 2 x +1 2 2 +1 1 1 ⇒ ≤ ( ) 2 2 x +1 2 ∂ ∂ ⇒ ≤ ( ) 2 2 x +1 2 Entonces: ( x −1 )−1 < δ ≤ ∂ ⇒ ( x −1 )−1 <∂ x −1 ( ) x −1 2 2 2 1+ x 2 2 2 Por lo tanto, δ = 2ε sirve; es decir, si tomamos 1 − 2ε < x < 1 + 2ε aseguramos lo propuesto, siempre y cuando escojamos un ε tal que ∂ ≤ 1 , es decir δ = min {1 , 2ε } Ejemplo 8 Demostrar formalmente que lím x − 4 = 4 . x →4 x −2 SOLUCION: x−4 Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0 < x − 4 < δ ⇒ −4 <ε x −2 Igual que en el ejemplo anterior primero vamos a analizar el consecuente: x−4 −4 <ε x −2 Factorizamos el numerador ( x − 4 ) ( x −2 )( x +2 ) −4 <ε para diferencia de cuadrados x −2 ( ) x +2 −4 <ε Simplificamos ( x −2 ) x −2 <ε Restamos ( x −2 )( x +2 ) <ε Multiplicamos y dividimos por ( x +2 ) ( x +2 ) x−4 Realizamos el Producto Notable <ε ( x +2 ) x−4 <ε Aplicamos la propiedad del cociente del x +2 valor absoluto x−4 <ε x +2 Despejamos Ahora para transformar el antecedente, se sigue una secuencia como la anterior pero desde el final:12
  13. 13. Moisés Villena Muñoz Cap. 1 Límites de Funciones x−4 δ (0 < x−4 <δ)⇒ 0< < Dividimos todos los términos entre ( x +2 ) x +2 x +2 ⇒0< ( x −2 )( x+2 )< δ ( x +2 ) x+2 Factorizamos ( x − 4 ) para diferencia de cuadrados δ ⇒0< x −2 < x +2 Simplificamos ( x+2 ) δ ⇒0< x −2+4−4 < Sumamos y restamos 4 x +2 δ ⇒0< ( ) x +2 −4 < x +2 Agrupamos ⇒0< ( x +2 )( x −2 )−4 < δ ( x −2 ) x +2 Multiplicamos y dividimos ( x −2 ) x−4 δ ⇒0< −4 < ( x −2 ) x +2 Realizamos el Producto Notable 1 Acotamos . Si tomamos a x a una distancia no mayor de 1, entorno a 4, entonces 3 ≤ x ≤ 5 , x +2 esto implica que: 3≤ x≤ 5 ⇒ 3+2≤ x +2≤ 5+2 1 1 1 ⇒ ≥ ≥ 3+2 x +2 5+2 1 1 ⇒ ≤ x +2 3+2 ∂ ∂ ⇒ ≤ x +2 3+2 Entonces: x−4 δ ∂ x−4 ∂ −4 < ≤ ⇒ −4 < ( x −2 ) x +2 3+2 ( x −2 ) 3+2 Por lo tanto, δ = ε ( 3+2 ) sirve; es decir, si tomamos 4 − ε ( ) 3 +2 < x < 4+ε ( 3+2 ) aseguramos lo que se quiere demostrar, siempre y cuando escojamos un ε tal que ∂ ≤ 1 , es decir δ = min 1, ε{ ( 3+2 )} 13
  14. 14. Moisés Villena Muñoz Cap. 1 Límites de Funciones Ejemplo 9 1 1 Demostrar formalmente que lím = . x→ 2 x 2 SOLUCION: 1 1 Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0< x−2 <δ ⇒ − <ε x 2 Analicemos el consecuente: 1 1 2− x 2− x x−2 − = = = x 2 2x 2x 2x Ahora trabajando con el antecedente: x−2 δ (0 < x−2 <δ)⇒0< 2x < 2x Dividimos para 2 x 1 1 δ ⇒0< − < 2 x 2x 1 1 δ ⇒0< − < x 2 2x 1 Acotamos . Considerando ∂ ≤ 1 ; tenemos 1 ≤ x ≤ 3 , esto implica que: 2x 1 1 1 2 ≤ 2x ≤ 6 ⇒ ≥ ≥ 2 2x 6 1 1 ⇒ ≤ 2x 2 ∂ ∂ ⇒ ≤ 2x 2 Entonces: 1 1 δ ∂ 1 1 ∂ − < ≤ ⇒ − < x 2 2x 2 x 2 2 Por lo tanto, δ = 2ε sirve; es decir, si tomamos 2 − 2ε < x < 2 + 2ε aseguramos lo que se quiere demostrar, siempre y cuando escojamos un ε tal que ∂ ≤ 1 , es decir δ = min {1 , 2ε } Veamos ahora como proceder si en el ejemplo anterior tenemos a x cercade 0 . Ejemplo 10 1 Demostrar formalmente que lím =1. x →1 x SOLUCION: 1 Debemos garantizar que ∀ε > 0, ∃δ > 0 tal que 0 < x −1 < δ ⇒ −1 < ε x Analicemos el consecuente:14
  15. 15. Moisés Villena Muñoz Cap. 1 Límites de Funciones 1 1− x 1− x x −1 −1 = = = x x x x Ahora trabajando con el antecedente: x −1 δ (0 < x −1 < δ ) ⇒ 0 < x < x Dividimos para x 1 δ ⇒ 0 < 1− < x x 1 δ ⇒0< −1 < x x 1 Acotamos . Aquí si tomamos ∂ ≤ 1 tenemos problemas porque 0 ≤ x ≤ 2 y x no puede ser 0; x 1 1 3 elijamos mejor ∂ ≤ (puede ser otro valor), ahora ≤ x ≤ , lo cual implica que: 2 2 2 1 2 1 ∂ 2≥ ≥ ⇒ ≤2 ⇒ ≤ 2∂ x 3 x x Entonces: 1 δ 1 − 1 < ≤ 2∂ ⇒ − 1 < 2∂ x x x ε ε ε Por lo tanto, δ = sirve; es decir, si tomamos 1 − < x < 1+ aseguramos lo que se quiere 2 2 2 1 ⎧1 ε ⎫ demostrar, siempre y cuando escojamos un ε tal que ∂ ≤ , es decir δ = min ⎨ , ⎬ 2 ⎩2 2⎭ Podría no ser tan sencillo encontrar un ∂ en función de ε , eso no significaque el límite no existe, todo depende de la regla de correspondencia de lafunción. Ejercicios Propuestos 1.1 1. Demostrar formalmente utilizando la definición de límite: x2 − 9 e) lím 2 x = 2 a) lím =6 x→2 x →3 x − 3 x −1 b) lím ( 2 x − 5 ) = −1 f) lím =2 x→2 x →1 x −1 x + 5x − 6 2 lím 3 x = 2 c) lím = −7 g) x →−6 x+6 x →8 2 x + 3x − 2 x − 3 3 2 h) lím 3 x = 3 a d) lím =5 x →a x →1 x2 −1 15
  16. 16. Moisés Villena Muñoz Cap. 1 Límites de Funciones 2. Determine un número “ ∂ ” para el valor de “ ε ” dado, tal que se establezca el límite de la función: 9x2 − 1 x a) lím = 2 , ε = 0.01 c) lím = 2, ε = 0.08 x→ 1 3x − 1 x →0 x +1 −1 3 x4 − a4 b) lím = 2a 2 , ε = 10−8 x→a x2 − a2 3. Sea f : ℜ + → ℜ tal que f ( x ) = x encuentre un valor de “ ∂ ” para que 2.99 < f ( x) < 3.01 siempre que 0 < x − 9 < ∂ 4. Sea f ( x) = 3 x . Empleando la definición de límite, establezca un intervalo en el cual tomar " x " para que f (x) esté a menos de 0.1 de 1 1.1.3 TEOREMA DE UNICIDAD DE LÍMITE. Sea f una función de una variable real. Si f tiene límite en x = x0 , entonces este es único. Es decir, si lím f ( x) = L y x→ x 0 lím f ( x) = M entonces L = M . x→ x0 Demostración: Por CONTRADICCIÓN. Supongamos que efectivamente f tiene dos límites L y M , entonces tenemos dos hipótesis: H1 : lím f ( x) = L ≡ ∀ε 1 > 0, ∃δ 1 > 0 tal que 0 < x − x 0 < δ 1 ⇒ f ( x) − L < ε 1 x → x0 H 2 : lím f ( x) = M ≡ ∀ε 2 > 0, ∃δ 2 > 0 tal que 0 < x − x 0 < δ 2 ⇒ f ( x) − M < ε 2 x → x0 Como se dice para todo ε 1 y para todo ε 2 entonces supongamos que ε 1 = ε 2 = ε . Tomemos ∂ = min{∂1,∂ 2 } para estar con x , en la vecindad de x0 . ⎧ f ( x) − L < ε ⎪ Simultáneamente tenemos: ∀ε > 0, ∃δ > 0 talque 0 < x − x0 < δ ⇒ ⎨ ⎪ f ( x) − M < ε ⎩ lo cual quiere decir también que: ∀ε > 0, ∃δ > 0 talque 0 < x − x0 < δ ⇒ f ( x) − L + f ( x) − M < 2ε M − f ( x) Por la desigualdad triangular a + b ≤ a + b , tenemos: f ( x) − L + M − f ( x ) ≤ f ( x) − L + M − f ( x) a b a b entonces como M − L ≤ f ( x) − L + M − f ( x) < 2ε podemos decir que M − L < 2ε 1 Ahora bien, suponiendo que ε= M −L se produce una contradicción porque tendríamos 2 M −L <2 (1 M − L ) lo cual no es verdad. Por lo tanto, se concluye que L = M . 2 L.Q.Q.D16
  17. 17. Moisés Villena Muñoz Cap. 1 Límites de Funciones Ejemplo (una función que no tiene límite en un punto) Sea f ( x) = sen ( 1x ) Analicemos su comportamiento en la vecindad de “0” x y = sen (1x ) −π 2 −1 −π 1 0 − 32 π 1 2 3π −1 1 0 π 2 1 π Se observa que la función en la vecindad de “0” tiene un comportamiento un tanto singular, sus valores son alternantes. Por tanto, se concluye que esta función no tiene límite en cero. Veamos su gráfica. Fig. 1.4 ⎛1⎞ y = sen⎜ ⎟ ⎝ x⎠1.2 LÍMITES LATERALES Existen funciones que por la derecha de un punto tienen un comportamientoy por la izquierda del punto tienen otro comportamiento. Esto ocurrefrecuentemente en funciones que tienen regla de correspondencia definida enintervalos y que su gráfica presenta un salto en un punto. Para expresarformalmente este comportamiento se hace necesario definir límites en un puntopor una sola dirección. 17
  18. 18. Moisés Villena Muñoz Cap. 1 Límites de Funciones 1.2.1 LÍMITE POR DERECHA Cuando x se aproxima a tomar el valor de x0 , pero sólo por su derecha (x 0 < x < x 0 + ∂ ) , f se aproxima a tomar el valor de L1 ; significa que f puede estar tan cerca de L1 , tanto como se pretenda ( ∀ε ), para lo cual deberá existir el correspondiente ∂ , que indica el intervalo en el cual tomar x que nos garantice aquello. Es decir: ⎛ lím f ( x) = L ⎞ ≡ ∀ε > 0, ∃∂ tal que 0 < x − x < ∂ ⇒ f ( x) − L < ε ⎜ x→ x + 1⎟ ⎝ 0 ⎠ 0 1 Ejemplo 1 Una función creciente en (x 0 , ∞ ) Fig. 1.5 Ejemplo 2 Una función decreciente en (x 0 , ∞ )18
  19. 19. Moisés Villena Muñoz Cap. 1 Límites de Funciones 1.2.2 LÍMITE POR IZQUIERDA. Cuando x se aproxima a tomar el valor de x0 , pero sólo por su izquierda ( x0 − ∂ < x < x0 ) , f se aproxima a tomar el valor de L2 ; significa que f puede estar tan cerca de L2 , tanto como se pretenda ( ∀ε ), para lo cual deberá existir el correspondiente ∂ , que indica el intervalo en el cual tomar x que nos garantice aquello. Es decir: ⎛ ⎞ ⎜ xlím− f ( x) = L2 ⎟ ≡ ∀ε > 0, ∃∂ tal que 0 < x0 − x < ∂ ⇒ f ( x) − L2 < ε ⎝ → x0 ⎠ Ejemplo 1 Una función decreciente en (−∞,x 0 ) Fig. 1.6 Ejemplo 2 Una función creciente en (−∞, x 0 ) Fig. 1.7 19
  20. 20. Moisés Villena Muñoz Cap. 1 Límites de Funciones Note que lo que se ha hecho es no otra cosa que separar la definición delímite en un punto que fue dada al comienzo. De las definiciones anteriores y por el Teorema de Unicidad de Límite surgeel siguiente teorema. 1.2.3 TEOREMA DE EXISTENCIA DE LÍMITE Si f es una función con límite en x0 entonces se cumple que tanto por izquierda como por derecha f tiende al tomar el mismo valor. Es decir: (lím f ( x) = L)≡ lím f ( x) = L ∧ lím f ( x) = L x → x0 x → x0 + x → x0 − Si se da que lím+ f ( x ) ≠ lím− f ( x ) , se dice que lím f ( x) no existe. x → x0 x → x0 x→ x0 Ejemplo 1 x−2 Sea f ( x) = . Hallar lím f ( x) : x−2 x→ 2 SOLUCIÓN: Expresando la regla de correspondencia sin valor absoluto, resulta: ⎧x−2 ⎪ x−2 ; x>2 ⎪x−2 ⎧ 1 ; x>2 f ( x) = =⎨ =⎨ x − 2 ⎪ − (x − 2 ) ⎩− 1 ; x<2 ; x<2 ⎪ x−2 ⎩ Esto quiere decir que su gráfica es: Fig. 1.8 De la gráfica observamos que lím f ( x) = 1 y lím f ( x) = −1 ; entonces se concluye que x→2 + x→2 − lím f ( x) no existe . x→220
  21. 21. Moisés Villena Muñoz Cap. 1 Límites de Funciones Ejemplo 2 ⎧2 x , x > 3 Demostrar formalmente que lím f (x ) = 6 si f (x ) = ⎪4 , x = 3 ⎨ x→3 ⎪3 x − 3 , x < 3 ⎩ SOLUCIÓN: Note que la función tiene regla de correspondencia con una definición a la derecha de 3 y otra diferente a la izquierda de 3, entonces es necesario demostrar que lím f (x ) = 6 y que lím f (x ) = 6 . x →3 + x →3 − + ( x →3 ) PRIMERO, lím 2 x = 6 ≡ ∀ε > 0, ∃∂ > 0 tal que 0 < x − 3 < ∂ ⇒ 2x − 6 < ε Ahora trabajando el antecedente: (0 < x − 3 < ∂) ⇒ 0 < 2 ( x − 3) < 2∂ ⇒ 0 < 2 x − 6 < 2∂ ⇒ 0 < 2 x − 6 < 2∂ ε ε Si ∂ = ; es decir, tomando 3 < x < 3 + garantizamos la afirmación que lím 2 x = 6 . + 2 2 x →3 SEGUNDO, ( lím (3x − 3) = 6) ≡ ∀ε > 0, ∃∂ > 0 tal que x → 3− 0 < 3 − x < ∂ ⇒ ( 3 x − 3) − 6 < ε Ahora trabajando el antecedente: ( 0 < 3 − x < ∂ ) ⇒ 0 < 3( 3 − x ) < 3∂ ⇒ 0 < 9 − 3 x < 3∂ ⇒ 0 < 6 + 3 − 3 x < 3∂ ⇒ 0 < − ( 3 x − 3) + 6 < 3∂ ⇒ 0 < − ⎡( 3 x − 3) − 6⎤ < 3∂ ⎣ ⎦ ⇒ 0 < ( 3 x − 3) − 6 < 3∂ ε ε Si ∂ = ; es decir, tomando 3− < x < 3 garantizamos que lím ( 3 x − 3) = 6 . − 3 3 x →3 Ejemplo 3 ⎧x − 1 , x ≥ 2 Demostrar formalmente que lím f (x ) no existe, si f (x ) = ⎨ x→2 ⎩x + 1 , x < 2 SOLUCIÓN: La función tiene regla de correspondencia con una definición a la derecha de 2 y otra diferente a la izquierda de 2, entonces es necesario demostrar que ambas definiciones convergen a distintos valores, es decir: lím f (x ) ≠ lím f (x ) . x →2+ x→2− Note que, lím ( x − 1) = 1 y que lím ( x + 1) = 3 + − x→2 x→2 PRIMERO, ( lím ( x − 1) = 1) ≡ ∀ε > 0, ∃∂ > 0 tal que x → 2+ 0 < x − 2 < ∂ ⇒ ( x − 1) − 1 < ε Ahora trabajando el antecedente: 21
  22. 22. Moisés Villena Muñoz Cap. 1 Límites de Funciones (0 < x − 2 < ∂ ) ⇒ 0 < x −1−1 < ∂ ⇒ 0 < ( x − 1) − 1 < ∂ ⇒ 0 < ( x − 1) − 1 < ∂ Si ∂ = ε ; es decir, tomando 2 < x < 2 + ε garantizamos que lím ( x − 1) = 1 . + x→2 SEGUNDO, ( lím ( x + 1) = 3) ≡ ∀ε > 0, ∃∂ > 0 tal que x → 2− 0 < 2 − x < ∂ ⇒ ( x + 1) − 3 < ε Ahora trabajando el antecedente: (0 < 2 − x < ∂) ⇒ 0 < 3 − 1 − x < ∂ ⇒ 0 < 3 − (1 + x ) < ∂ ⇒ 0 < − ⎡( x + 1) − 3⎤ < ∂ ⎣ ⎦ ⇒ 0 < ( x + 1) − 3 < ∂ Si ∂ = ε ; es decir, tomando 2 − ε < x < 2 garantizamos que lím ( x + 1) = 3 . − x→2 Por lo tanto, al demostrar que f converge a distintos valores en la vecindad de 2 , estamos demostrando que lím f (x ) no existe x→2 Ejemplo 4 Demostrar formalmente que lím+ ( 2 x − x )=2 x→2 SOLUCIÓN: ( lím ( 2x − x ) = 2) ≡ ∀ε > 0, ∃∂ > 0 tal que x → 2+ 0 < x − 2 < ∂ ⇒ ( 2x − x ) − 2 < ε No olvide que a la derecha de 2 el entero mayor de x es igual a 2, es decir x = 2 . Trabajando el antecedente: ( 0 < x − 2 < ∂ ) ⇒ 0 < 2 x − 4 < 2∂ ⇒ 0 < 2 x − 2 − 2 < 2∂ ⇒ 0 < ( 2 x − x ) − 2 < 2∂ ¨ ⇒ 0 < ( 2 x − x ) − 2 < 2∂ ε ε Si ∂ = 2 ; es decir, tomando 2 < x < 2 + 2 ( garantizamos que lím 2 x − x + x→2 )=2.22

×