NCompass Live: Conducting Surveys II: Data Collection


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

NCompass Live: Conducting Surveys II: Data Collection

  1. 1. Conducting Surveys II<br />Data Collection<br />NCompass Live – June 9, 2010<br />
  2. 2. About the presenter<br />Research Analyst<br />Special Projects Associate<br />Grant writer<br />Evaluator<br /><br />402.471.4002<br />
  3. 3. About you<br />Your role<br />Library Director<br />Trustee<br />Friends/Foundation Board Member<br />Your credentials<br />
  4. 4. About you, cont’d<br />
  5. 5. About you, cont’d<br />
  6. 6. Recap of Conducting Surveys I<br />Reasons for conducting a survey<br />Issues in effective questionnaire design, data collection and analysis, and reporting<br />Questionnaire design, especially measurement, content, and structure<br />
  7. 7. About this presentation<br />Sampling<br />How to target your respondents<br />Survey methods<br />
  8. 8. Sample<br />A subset of individuals within a population of interest<br />Sampling is the act, process, or technique of selecting a suitable sample, or a representative part of a population for the purpose of determining parameters or characteristics of the whole population<br />Goal of sampling: to be able to make inferences to the population in question<br />
  9. 9. Why sample?<br />Lower cost<br />Faster data collection<br />
  10. 10. Sampling process<br />Defining the population of concern<br />Specifying a sampling frame, a set of items or events possible to measure<br />Specifying a sampling method for selecting items or events from the frame<br />Determining the sample size<br />Implementing the sampling plan<br />Sampling and data collecting<br />Reviewing the sampling process<br />
  11. 11. Define the population<br />Definition: Entire universe of individuals who have characteristic of interest <br />Examples: Residents of city, residents of county, library card holders, users, nonusers, visitors to library, computer lab users, program attendees<br />
  12. 12. Sampling frame<br />Definition: has a property that we can identify and can include in our sample<br />Examples: telephone directory, city directory, patron database, attendance sheets, voter registration list, utility bill recipients, newspaper readers, random digit dialing (RDD)<br />
  13. 13. Sampling methods<br />Probability sampling: every individual has an equal chance of being selected<br />Nonprobability sampling: some units in the population have no chance of selection or the probability of selection can’t be accurately determined<br />
  14. 14. Sampling methods examples<br />Probability<br />Simple random<br />Systematic<br />Stratified<br />Nonprobability<br />Convenience<br />Judgment<br />Quota<br />Snowball<br />
  15. 15. Sampling example #1<br />Simple random<br />Population: Patrons<br />Frame: Patron database<br />Method: Random number generator—in Excel: =RANDBETWEEN(num1,num2) <br />
  16. 16. Sampling example #2<br />Systematic<br />Population: City residents that have a listed land-line telephone<br />Frame: Telephone directory<br />Method: Randomly select a number n (ex., 20) or smaller, start there on the first page of the directory and select every nth (ex., 20th) entry<br />
  17. 17. Sampling example #3<br />Convenience<br />Population: Library visitors<br />Frame: Anyone who approaches or passes by the reference desk<br />Method: Stop as many people as possible<br />
  18. 18. Population example<br />Entire universe<br />Population: Event attendees<br />Distribute questionnaire to everyone in attendance<br />
  19. 19. Sample size criteria<br />Level of precision/sampling error (e.g., ±5 percent): range in which the true value of the population is estimated to be<br />Confidence level: repeat sample values are normally distributed about the true value<br />Degree of variability: heterogeneous populations require a larger sample size<br />
  20. 20. Determine sample size<br />(Obtained responses)<br />
  21. 21. Implement the sampling plan<br />
  22. 22. Evaluate the sample<br />Response rate<br />Number completed<br />Total number in sample<br />
  23. 23. Survey methods<br />Questionnaire<br />Mail, paper-and-pencil<br />Group-administered<br />Internet<br />E-mail<br />Interview<br />Personal<br />Telephone<br />
  24. 24. Targeting your respondents<br />Mail<br />E-mail<br />Website<br />Newsletter<br />Press release<br />
  25. 25. Method of administration<br />Paper-and-pencil (Self report, face-to-face, telephone)<br />Electronic (e-mail)<br />Online/Internet<br />Pros/cons<br />
  26. 26. Paper-and-pencil<br />Self report<br />Face-to-face<br />Telephone<br />
  27. 27. Online<br />SurveyMonkey<br /><br />Zoomerang<br /><br /><br /><br />Polldaddy<br /><br />LimeSurvey<br /><br />SurveyGizmo<br /><br />twtsurvey<br /><br />
  28. 28. Data collection walkthrough<br />Paper-and-pencil<br />Online <br />
  29. 29. Resources<br />Survey Research Methods, 4th Ed., by Floyd Fowler<br /><br /><br /><br /><br /><br /><br />
  30. 30. Next steps<br />Evaluation<br />
  31. 31. Questions?<br />CE credits<br />Evaluation<br />
  32. 32. Related topics<br />NCompass Live archived sessions<br />Conducting Surveys I: Introduction and Questionnaire Design – May 12, 2010<br /><br />Presenting Data in Meaningful and Interesting Ways – Jan. 1, 2010<br /><br />American Factfinder - Mining the U.S. Census for Information about Your Community – Dec. 9, 2009<br /><br />
  33. 33. Upcoming sessions<br />Tech Talk with Michael Sauers – June 30<br /><br />Conducting Surveys III: Analyzing Data and Reporting Methods – July 14<br /><br />Communication--Getting the Word Out: Does your audience hear what you mean? – July 21<br /><br />
  34. 34. Resources<br />Survey Research Methods, 4th Ed., by Floyd Fowler<br /><br /><br /><br /><br /><br /><br />
  35. 35. Your feedback<br /><br />Thank you!<br />