• Like


Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Health IT in Hospital Settings

Uploaded on

A presentation on Dec. 3, 2010 for Hospital Administration School, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand.

A presentation on Dec. 3, 2010 for Hospital Administration School, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads


Total Views
On Slideshare
From Embeds
Number of Embeds



Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

    No notes for slide


  • 1. Health IT in Hospital Settings Nawanan Theera-Ampornpunt MD MS Theera Ampornpunt, MD,Healthcare CIO Program, Ramathibodi Hospital Administration SchoolDec. 3, 2010 SlideShare.net/Nawanan Except where  citing other works
  • 2. Health Care System Home Emergency Responders Hospital Nursing Home/ N i H / Long-Term Care Facility Ministry of y Public Health The Payers Clinic/ Physician’s Office Pharmacy Community Lab Health Center (PCU)
  • 3. Hospital sHospital’s Roles• Provider of Secondary & Tertiary Care – Acute Care – Chronic Care – Emergency• Facilitator of Primary Care• Sometimes Teaching & Research
  • 4. Levels of Hospitals• Community Hospitals• General/Provincial Hospitals• Tertiary/Regional Hospitals• U i University M di l C i Medical Centers• Specialty Hospitals
  • 5. Types of Hospitals• Public• Private For-Profit• Private Not-For-Profit• Stand-Alone Stand Alone• Part of Multi-Hospital System
  • 6. Why They Matter: The Importance of “Context” Context• $$$ (Purchasing Power)• Bureaucracies & regulations• Organizational cultures & management styles• L Level of organizational/workflow complexity l f i i l/ kfl l i• Facilities & level of information needs• Service volume, resources, priorities• Internal IT capabilities & environments
  • 7. IT Decision Making in Hospitals: Key Points• Depends on local context• IT is not alone -> Business-IT alignment/integration• “Know your organization”• Vi View IT as a tool for something else, not the lf hi l h end goal by itself• Focus on the real goals (what define “success”)
  • 8. Success of IT Implementation DeLone & McLean (1992)
  • 9. CLASS EXERCISE #3Suggest 2-3 examples of “success” 23 successof IT implementation in hospitalsforf each of D L h f DeLone & M L McLean’s’Model (1992) ( )
  • 10. Success of IT ImplementationSystem Quality• System performance (response time, reliability)• Accuracy, error rate• Fl ibili Flexibility• Ease of use• Accessibility
  • 11. Success of IT ImplementationInformation Quality• Accuracy• Currency, timeliness• R li bili Reliability• Completeness• Relevance• Usefulness
  • 12. Success of IT ImplementationUse• Subjective (e.g. asks a user “How often do you use the system? ) system?”)• Objective (e.g. number of orders done electronically)User Satisfaction• S i f i toward system/information Satisfaction d /i f i• Satisfaction toward use
  • 13. Success of IT ImplementationIndividual Impacts• Efficiency/productivity of the user• Quality of clinical operations/decision-makingOrganizational Impacts• Faster operations, cost & time savings• Better quality of care, better aggregate outcomes• Reputation increased market share Reputation,• Increased service volume or patient retention
  • 15. Examples of Hospital ITEnterprise-wide te p se de• Infrastructural IT (e.g. hardware, OS, network, web, e-mail)• Office Automation• MPI, ADT• EHRs/EMRs/HIS/CIS• CPOE & CDSSs• Nursing applications• Billing Claims & Reimbursements Billing,• MIS, ERP, CRM, DW, BI
  • 16. Examples of Hospital ITDepartmental Applications• Pharmacy applications• LIS, PACS, RIS• Specialized applications (ER OR LR Anesthesia (ER, OR, LR, Anesthesia, Critical Care, Dietary Services, Blood Bank)• I id t management & reporting system Incident t ti t• E-Learning• Clinical research informatics
  • 17. 4 Quadrants of Hospital IT StrategicModified from • Business • CDSSTheera- Intelligence • HIEAmpornpunt, 2010 • MIS • CPOE • Data Mining/ • PACS Utilization • Medication • Customer- Safety Apps Relationship • EHRs Management Administrative Ad i i t ti Clinical Cli i l • Enterprise • HIS Resource • RIS Planning • LIS (Finance, • ADT Materials, HR) • MPI • Data Warehouse • Most • Office departmental d t t l systemsPosition may vary based on local context Operational
  • 18. The IT Infrastructure
  • 19. Infrastructural IT• HW/SW Acquisition, installation & maintenance Acquisition• System administration• Network administration d i i t ti• Security
  • 20. Infrastructural ITIssues• Expertise• Insourcing vs. Outsourcing• Policy & Process Controls• Best Practices in Design & Management• Documentation!!!• Risks – Confidentiality/Integrity – Outages – Redundancy vs. C t R d d Cost – Configuration complexities & patch management – Compatibility & Technology Choices
  • 21. The Clinical IT
  • 22. Master Patient Index (MPI)• A hospital’s list of all patients• Functions – Registration/identification of patients (HN/MRN) – Captures/updates patient demographics – Used in virtually all other hospital service applications y p pp• Issues – A large database – Interface with other systems – Duplicate resolutions – Accuracy & currency of patient information – Language issues
  • 23. Admit Discharge TransferAdmit-Discharge-Transfer (ADT)• Functions – S Supports Ad it Di h t Admit, Discharge & T Transfer of patients f f ti t (“patient management”) – Provides status/location of admitted patients – Used in assessing bed occupancy – Linked to billing, claims & reimbursements g,• Issues – Accuracy & currency of patient status/location – Handling of exceptions (e.g. patient overflows, escaped patients, home leaves, discharged but not yet departed, missing discharge information) – Input of important information (diagnoses, D/C summary) – Links between OPD IPD ER & OR OPD, IPD,
  • 24. EHRs & HIS The Challenge - Knowing What It Means Electronic Health Records (EHRs) Hospital Information Electronic Medical System (HIS) Records (EMRs) Electronic Patient Records (EPRs) Clinical Information Personal Health Computer-Based C t B d System (CIS) Records (PHRs) Patient Records (CPRs)
  • 25. EHRsCommonly Accepted Definitions• El t i d Electronic documentation of patient care by providers t ti f ti t b id• Provider has direct control of information in EHRs• Synonymous with EMRs EPRs CPRs EMRs, EPRs,• Sometimes defined as a patient’s longitudinal records over several “episodes of care” & “encounters” ( p (visits) )
  • 26. EHR SystemsAre they just a system that allows electronic documentation ofclinical care? History Hi Diag- Di Treat- T ... & PE nosis mentsOr do they have other values?
  • 27. Documented Benefits of Health IT• Literature suggests improvement through – Guideline adherence (Shiffman et al, 1999;Chaudhry et al, 2006) – Better documentation (Shiffman et al, 1999) – Practitioner decision making or process of care (Balas et al, 1996;Kaushal et al, 2003;Garg et al, 2005) – Medication safety (Kaushal et al, 2003;Chaudhry et al, 2006;van Rosse et al, 2009) – Patient surveillance & monitoring (Chaudhry et al, 2006) g( y ) – Patient education/reminder (Balas et al, 1996) – Cost savings and better financial p g performance (Parente & Dunbar, 2001;Chaudhry et al, 2006;Amarasingham et al, 2009; Borzekowski, 2009)
  • 28. Functions that Should Be Part of EHR Systems• Computerized Medication Order Entry (IOM, 2003; Blumenthal et al, 2006)• Computerized Laboratory Order Entry (IOM, 2003)• Computerized Laboratory Results (IOM, 2003)• Physician Notes (IOM, 2003)• Patient Demographics (Blumenthal et al, 2006)• Problem Lists (Blumenthal et al, 2006)• Medication Lists (Blumenthal et al, 2006)• Discharge Summaries (Blumenthal et al, 2006)• Diagnostic Test Results (Blumenthal et al, 2006) al• Radiologic Reports (Blumenthal et al, 2006)
  • 29. EHR Systems/HIS: Issues• Functionality & workflow considerations• Structure & format of data entry – Free text vs structured data forms – Usability – Use of standards & vocabularies (e.g. ICD-10, SNOMED CT) – Templates (e.g. standard narratives, order sets) – Level of customization per hospital, specialty, location, group, clinician – Reduced clinical value due to over-documentation (e.g. medico-legal, HA) – Special documents (e g operative notes anesthetic notes) (e.g. notes, – Integration with paper systems (e.g. scanned MRs, legal documents)• Reliability & contingency/business continuity planning• Roll-out strategies & change management• Interfaces
  • 30. Computerized (Physician/Provider) Order EntryFunctions• Ph i i di tl enters medication/lab/diagnostic/imaging Physician directly t di ti /l b/di ti /i i orders online• Nurse & pharmacy process orders accordingly• Maybe considered part of an EHR/HIS systemValues• No handwriting!!!• Structured data entry (completeness, clarity, fewer mistakes)• No transcription!• Entry point for CDSSs• Streamlines workflow, increases efficiency
  • 31. Computerized (Physician/Provider) Order EntryIssues• “Ph i i as a clerk” f t ti “Physician l k” frustration• Usability -> Reduced physician productivity?• Unclear value proposition for physician?• Complexity of medication data structure• Integration of medication, lab diagnostic imaging &other orders medication lab, diagnostic,• Roll-out strategies & change management Washington Post (March 21, 2005) “One of the most important lessons learned to date is that the complexity of h f human change management may b easily underestimated” h be il d i d” Langberg ML (2003) in “Challenges to implementing CPOE: a case study of a work in progress at Cedars-Sinai”
  • 32. Clinical Decision Support Systems (CDSSs)• The real place where most of the values of health IT can be achieved• A variety of forms and nature of CDSSs – Expert systems p y • Based on artificial intelligence, machine learning, rules, or statistics • Examples: differential diagnoses, treatment options – Alerts & reminders • Based on specified logical conditions • Examples: drug-allergy checks, drug-drug interaction checks, drug-lab interaction checks, drug-formulary checks, reminders for preventive services or certain actions (e.g. smoking cessation), clinical practice guideline integration – Evidence-based knowledge sources e.g. drug database, literature – Simple UI designed to help clinical decision making
  • 33. Clinical Decision Support Systems (CDSSs) PATIENT Perception P ti CLINICIAN Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data InferenceFrom a teaching slide by Don Connelly 2006 Connelly, DECISION
  • 34. Clinical Decision Support Systems (CDSSs) PATIENT Perception P ti CLINICIAN Abnormal lab Attention highlights Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION
  • 35. Clinical Decision Support Systems (CDSSs) PATIENT Perception P ti CLINICIAN Order Sets Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION
  • 36. Clinical Decision Support Systems (CDSSs) PATIENT Perception P ti CLINICIAN Drug-Allergy Attention Checks Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION
  • 37. Clinical Decision Support Systems (CDSSs) PATIENT Perception P ti Drug-Drug CLINICIAN Interaction Attention Checks Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION
  • 38. Clinical Decision Support Systems (CDSSs) PATIENT Perception P ti Clinical CLINICIAN Practice Attention Guideline Reminders Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION
  • 39. Clinical Decision Support Systems (CDSSs) PATIENT Integration of Evidence-Based Perception P ti Resources (e g (e.g. CLINICIAN drug databases, literature) Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION
  • 40. Clinical Decision Support Systems (CDSSs) PATIENT Perception P ti CLINICIAN Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference Diagnostic/Treatment Expert Systems DECISION
  • 41. Clinical Decision Support Systems (CDSSs)Issues• CDSS as a supplement or replacement of clinicians? l t l t f li i i ? – The demise of the “Greek Oracle” model (Miller & Masarie, 1990) The “Greek Oracle” Model The “Fundamental Theorem” (Friedman, 2009)
  • 42. Clinical Decision Support Systems (CDSSs)Issues• F t Features with improved clinical practice (K ith i d li i l ti (Kawamoto et al., 2005) t t l – Automatic provision of decision support as part of clinician workflow – Provision of recommendations rather than just assessments j – Provision of decision support at the time and location of decision making – Computer based decision support• Usability & impact on productivity
  • 43. Clinical Decision Support Systems (CDSSs)Issues• Al t sensitivity & alert f ti Alert iti it l t fatigue
  • 44. Clinical Decision Support Systems (CDSSs)Issues• Ethi l l Ethical-legal i l issues – Liabilities: Clinicians as “learned intermediaries” – Prohibition of certain transactions vs. Professional autonomy y (see Strom et al., 2010)• Unintended Consequences (e.g. workarounds) – See Koppel et al (2005) Campbell et al (2006) & Harrison et al (2007) al. (2005), al. al.
  • 45. Clinical Decision Support Systems (CDSSs)Issues• Ch Choosing th right CDSS strategies i the i ht t t i• Expertise required for proper CDSS design & implementation• Integration into the point of care with minimal productivity/ workflow impacts• Everybody agreeing on the “rules” to be enforced y y g g• Maintenance of the knowledge base• Evaluation of effectiveness
  • 46. Nursing ApplicationsFunctions• DDocuments nursing assessments, i t t i t interventions & outcomes ti t• Facilitates charting & vital sign recording• Utilizes standards in nursing informatics• Populates and documents care-planning• Risk/incident management• etc.Issues• Minimizing workflow/productivity impacts• Goal: Better documentation vs. better care?• Evolving standards in nursing practice• Change management
  • 47. Pharmacy ApplicationsFunctions• St Streamlines workflow f li kfl from medication orders t di di ti d to dispensing and i d billing• Reduces medication errors improves medication safety errors,• Improves inventory management
  • 48. Imaging ApplicationsPicture Archiving and Communication System (PACS)• C t Captures, archives, and di l hi d displays electronic i l t i images captured f t d from imaging modalities (DICOM format)• Often refers to radiologic images but sometimes used in other settings as well (e.g. cardiology, endoscopy, pathology, ophthalmology)• Values: reduces space, costs of films, loss of films, parallel viewing, remote access, image processing & manipulation, referralsRadiology Information System (RIS) or Workflow Management• Supports workflow of the radiology department, including patient registration, appointments & scheduling, consultations, imaging reports, etc.
  • 49. Stages of Medication Process Ordering Transcription Dispensing Administration Automatic Electronic CPOE Medication Medication Dispensing Administration Records (e-MAR) Barcoded Medication Barcoded Dispensing Medication Administration d s a o
  • 50. Pharmacy ApplicationsIssues• Wh enters medication orders i t electronic f Who t di ti d into l t i format at which t t hi h stage?• Unintended consequences• “Power shifts”• Handling exceptions ( g countersigns, verbal orders, g p (e.g. g , , emergencies, formulary replacements, drug shortages)• Choosing the right technology for the hospital• Goal: Workflow facilitation vs. medication safety?
  • 51. Take-Away Messages• Health IT in hospitals comes in various forms• Local contexts are important considerations L l t t i t t id ti• Hospital IT is a very complex environment• Health IT has much potential to improve quality & efficiency of care• But it is also risky... – Costs – Change resistance – Poor design – Alert fatigue – Workarounds and unintended consequences – Use of wrong technology to fix the wrong process for the wrong goal• We need to have an informatician’s mind (not just a technologist’s mind) to help us navigate through the complexities
  • 52. Next: Health ITBeyond Hospitals
  • 53. References• Amarasingham R, Plantinga L, Diener‐West M, Gaskin DJ, Powe NR. Clinical information  technologies and inpatient outcomes: a multiple hospital study. Arch Intern Med.  h l d l l h l d h d 2009;169(2):108‐14.• Balas EA, Austin SM, Mitchell JA, Ewigman BG, Bopp KD, Brown GD. The clinical value of  computerized information services. A review of 98 randomized clinical trials. Arch Fam Med.  computerized information services A review of 98 randomized clinical trials Arch Fam Med 1996;5(5):271‐8.• Borzekowski R. Measuring the cost impact of hospital information systems: 1987‐1994. J Health  Econ. 2009;28(5):939‐49. ; ( )• Campbell EM, Sittig DF, Ash JS, Guappone KP, Dykstra RH. Types of unintended consequences  related to computerized provider order entry. J Am Med Inform Assoc. 2006 Sep‐Oct;13(5):547‐56.• Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E, Morton SC, Shekelle PG. Systematic  review: impact of health information technology on quality, efficiency, and costs of medical care.  Ann Intern Med. 2006;144(10):742‐52.• DeLone WH, McLean ER. Information systems success: the quest for the dependent variable.  Inform Syst R 1992 M 3(1) 60 95 I f S Res. 1992 Mar;3(1):60‐95.• Friedman CP. A "fundamental theorem" of biomedical informatics. J Am Med Inform Assoc. 2009  Apr;16(2):169‐170. 
  • 54. References• Garg AX, Adhikari NKJ, McDonald H, Rosas‐Arellano MP, Devereaux PJ, Beyene J, et al. Effects of  computerized clinical decision support systems on practitioner performance and patient outcomes: a  systematic review. JAMA. 2005;293(10):1223‐38. systematic review JAMA 2005;293(10):1223 38• Harrison MI, Koppel R, Bar‐Lev S. Unintended consequences of information technologies in health  care‐‐an interactive sociotechnical analysis. J Am Med Inform Assoc. 2007 Sep‐Oct;14(5):542‐9.• Kaushal R Shojania KG Bates DW Effects of computerized physician order entry and clinical decision R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision  support systems on medication safety: a systematic review. Arch. Intern. Med. 2003;163(12):1409‐ 16.• Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision  p g p g support systems: a systematic review of trials to identify features critical to success. BMJ. 2005 Apr  2;330(7494):765.• Koppel R, Metlay JP, Cohen A, Abaluck B, Localio AR, Kimmel SE, et al. Role of computerized physician  order entry systems in facilitating medication errors. JAMA. 2005 Mar 9;293(10):1197‐1203.  d f l d ( )• Miller RA, Masarie FE. The demise of the "Greek Oracle" model for medical diagnostic systems.  Methods Inf Med. 1990 Jan;29(1):1‐2. • Parente ST D b JL I h lth i f P t ST, Dunbar JL. Is health information technology investment related to the financial  ti t h l i t t l t d t th fi i l performance of US hospitals? An exploratory analysis. Int J Healthc Technol Manag. 2001;3(1):48‐58.• Shiffman RN, Liaw Y, Brandt CA, Corb GJ. Computer‐based guideline implementation systems: a  systematic review of functionality and effectiveness. J Am Med Inform Assoc. 1999;6(2):104 14. systematic review of functionality and effectiveness J Am Med Inform Assoc 1999;6(2):104‐14
  • 55. References• Strom BL, Schinnar R, Aberra F, Bilker W, Hennessy S, Leonard CE, Pifer E. Unintended effects of a  computerized physician order entry nearly hard‐stop alert to prevent a drug interaction: a  randomized controlled trial. Arch Intern Med. 2010 Sep 27;170(17):1578‐83. randomized controlled trial Arch Intern Med 2010 Sep 27;170(17):1578 83• Theera‐Ampornpunt N. Adopting Health IT: What, Why, and How? Presented at: How to Implement  World Standard Hospital IT?; 2010 Nov 3; Srinagarind Hospital, Faculty of Medicine, Khon Kaen U e s ty, o ae , a a d. University, Khon Kaen, Thailand. Invited speaker, in Thai.  ted spea e , a. http://www.slideshare.net/nawanan/adopting‐health‐it‐what‐why‐and‐how• Van Rosse F, Maat B, Rademaker CMA, van Vught AJ, Egberts ACG, Bollen CW. The effect of  computerized physician order entry on medication prescription errors and clinical outcome in  pediatric and intensive care: a systematic review. Pediatrics. 2009;123(4):1184‐90.