• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Health Informatics for Hospital Executives
 

Health Informatics for Hospital Executives

on

  • 2,788 views

A presentation in February 2011 presented at the Ramathibodi Hospital Administration School, Faculty of Medicine Ramathibodi Hospital, Mahidol University in Bangkok, Thailand. Presentation partly in ...

A presentation in February 2011 presented at the Ramathibodi Hospital Administration School, Faculty of Medicine Ramathibodi Hospital, Mahidol University in Bangkok, Thailand. Presentation partly in English and partly in Thai.

Statistics

Views

Total Views
2,788
Views on SlideShare
2,788
Embed Views
0

Actions

Likes
0
Downloads
113
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Health Informatics for Hospital Executives Health Informatics for Hospital Executives Presentation Transcript

    • Health Informaticsfor Hospital Executives Nawanan Th N Theera-Ampornpunt, MD MS A t MD, Feb 14, 2011 Ramathibodi Hospital Administration School SlideShare.net/Nawanan
    • A Few Words About Me... Me 2003 Doctor of M di i (1st-Class Honors) Ramathibodi D f Medicine (1 Cl H ) 2009 M.S. (Health Informatics) University of Minnesota Currently • Ph.D. Candidate (Health Informatics) University of Minnesota ( ) y • Medical Systems Analyst, Health Informatics Division, Ramathibodi Contacts @ @Nawanan @ @ThaiHealthIT ranta@mahidol.ac.th SlideShare.net/Nawanan www.tc.umn.edu/~theer0022 groups.google.com/group/ThaiHealthIT
    • Outline • Healthcare & Health IT • Health IT Applications • H lth I f Health Informatics A A Fi ld ti As Field • IT Management3
    • Healthcare & H lh Health IT4
    • Manufacturing a u actu g5 Image Source: Guardian.co.uk
    • Banking a g6 Image Source: Cablephet.com
    • Healthcare ea t ca e7 ER - Image Source: nj.com
    • Why Healthcare Isn’t Like Any Others? y y • Life-or-Death • Many & varied stakeholders • Strong professional values • Evolving standards of care • Fragmented, poorly-coordinated systems • Large, ever-growing & changing body of knowledge • High volume low resources volume, resources, little time8
    • Why Healthcare Isn’t Like Any Others? y y • Large variations & contextual dependence Input Process Output Patient Decision- Decision Biological Presentation Making Responses9
    • But...Are We That Different? Banking Input Process Output Transfer Location A Location B Value-Add - Security - Convenience - Customer Service10
    • But...Are We That Different? Manufacturing Input Process Output Raw Assembling Finished Materials Goods Value-Add - Innovation - Design - QC11
    • But...Are We That Different? Healthcare Input Process Output Sick Patient Patient Care Well Patient Value-Add - Technology & medications - Clinical knowledge & skills - Quality of care; process improvement - Information12
    • Information is Everywhere o at o s ey ee13
    • Various Forms of Health ITHospital Information System (HIS) Computerized Provider Order Entry (CPOE) Electronic Health Records Picture Archiving and g (EHRs) Communication System (PACS)14
    • Still Many Other Forms of Health IT Health Information Exchange ( g (HIE)) m-Health m Health Biosurveillance Personal Health Records (PHRs) Telemedicine & Information Retrieval Telehealth15 Images from Apple Inc., Geekzone.co.nz, Google, PubMed.gov, and American Telecare, I
    • Why Adopting Health IT? “To Go paperless” To paperless “To Computerize To Computerize” “To Get a HIS” “Digital Hospital” Digital Hospital “To H “T Have EMR ” EMRs” “To Modernize” “To Share data” To data16
    • Some Quotes Q • “Don’t implement technology just for Don t technology’s sake.” • “Don’t make use of excellent technology. Make excellent use of technology ” technology. (Tangwongsan, Supachai. Personal communication, 2005.) • “Health care IT is not a panacea for all Health that ails medicine.” (Hersh, 2004)17
    • Health IT: What’s In A Word? Health Goal Information Value-Add Technology T h l Tools18
    • Dimensions of Quality Healthcare y • Safety • Timeliness • Effectiveness • Efficiency • Equity E it • Patient centeredness Patient-centeredness19 (IOM, 2001)
    • Value o Health IT a ue of ea t • Guideline adherence • Better documentation • Practitioner decision making or process of care f • Medication safety • Patient surveillance & monitoring • Patient education/reminder20
    • Fundamental Theorem of Informatics21 (Friedman, 2009) (Friedman, 2009)
    • Is There A Role for Health IT?22 (IOM, 2000)
    • Landmark IOM Reports p (IOM, 2000) (IOM, 2001)23
    • Landmark IOM Reports: Summary p y • Humans are not perfect and are bound to make errors • Hi hli ht problems i th U S Highlight bl in the U.S. health care system that systematically contributes t t ti ll t ib t to medical errors and poor quality • Recommends reform that would change how health care works and g how technology innovations can help improve q p p quality/safety y y24
    • Why We Need Health IT • Health care is very complex (and inefficient) • Health care is information rich information-rich • Quality of care depends on timely availability & quality il bilit lit of information • Clinical knowledge body is too large • Short time during a visit g • Practice guidelines are put “on-the-shelf” on the shelf • “To err is human”25
    • To Err Is Human • Perception errors26 Image Source: interaction-dynamics.com
    • To Err Is Human • L k of Attention Lack f Att ti Image Source: aafp.org27
    • To Err Is Human • Cognitive Errors - Example: Decoy Pricing # of The Economist Purchase Options People • Economist.com subscription $59 16 • Print subscription $125 0 • Print & web subscription $125 84 # of The Economist Purchase Options People • Economist.com subscription $59 68 • Print & web subscription p $ $125 32 (Ariely, 2008)28
    • What If This Happens in Healthcare? • It already h l d happens.... (Mamede et al., 2010; Croskerry, 2003; Klein, 2005) • What if health IT can help?29
    • Adoption of Health IT: Assumptions Adoption Use Outcomes 3030
    • U.S.’s Efforts on Health IT Adoption ? “...We will make wider use of electronic records We and other health information technology, to help control costs and reduce dangerous medical errors.” President George W Bush W. Sixth State of the Union Address, January 31, 200631 Source: Wikisource.org Image Source: Wikipedia.org
    • Public Policy in Informatics: A US’s Case 1991: IOM s CPR Report published IOM’s 1996: HIPAA enacted 2000-2001: IOM’s To Err Is Human & Crossing the Quality Chasm published 2004: George W. Bush’s Executive Order establishing ONCHIT (ONC) g ( ) 2009-2010: ARRA/HITECH Act & “Meaningful use” regulations Meaningful use32
    • U.S. Adoption of Health IT p Ambulatory (Hsiao et al, 2009) Hospitals (Jha et al, 2009) Basic EHRs w/ notes 7.6% Comprehensive EHRs p 1.5% CPOE 17% • U.S. lags behind other Western countries (Schoen et al, 2006;Jha et al, 2008) • Money and misalignment of benefits is the biggest reason gg33
    • We Need “Change” “...we need to upgrade our medical records by switching from a p p to y g paper an electronic system of record keeping...” President Barack Ob P id t B k Obama June 15, 200934
    • The Birth of “Meaningful Use” “...Our recovery p y plan will invest in electronic health records and new technology that will reduce errors, bring down costs, ensure privacy and save lives ” privacy, lives. President Barack Obama Address to Joint Session of Congress February 24, 200935 Source: WhiteHouse.gov
    • American Recovery & Reinvestment Act • Contains HITECH Act (Health Information Technology for Economic and Clinical Health Act) • ~ 20 billion dollars for Health IT investments • Incentives & penalties for providers36
    • National Leadership Office of the National Coordinator for Health Information Technology (ONC -- formerly ONCHIT) David Blumenthal, MD, MPP National Coordinator for Health Information Technology (2009 - Feb 2011) [Just Photo courtesy of U.S. Department of Health & Human Services37
    • What is in the HITECH Act?38 (Blumenthal, 2010)
    • “Meaningful Use” g “Meaningful Use” “M i f lU ” Pumpkin of a Pumpkin39 Image Source & Idea Courtesy of Pat Wise at HIMSS, Oct. 2009
    • “Meaningful Use” of Health IT g Stage 1 - Electronic capture of Better health information - Information sharing Stage 3 Health - D t reporting Data ti Stage 2 Use of EHRs to Use of improve EHRs to outcomes improve processes of care40 (Blumenthal, 2010)
    • Health H l h IT Applications41
    • Enterprise-wide Enterprise wide Hospital IT • Master Patient Index (MPI) • Admit-Discharge-Transfer (ADT) • Electronic Health Records (EHRs) • Computerized Physician Order Entry (CPOE) • Clinical Decision Support Systems (CDSSs) • Picture Archiving and Communication System (PACS) • Nursing applications • Enterprise Resource Planning (ERP)42
    • Departmental IT • Pharmacy applications • Laboratory Information System ( y y (LIS) ) • Specialized applications (ER, OR, LR, Anesthesia, LR Anesthesia Critical Care Care, Dietary Services, Blood Bank) • Incident management & reporting system43
    • EHRs & HIS The Challenge - Knowing What It Means Electronic Health Records (EHRs) Hospital Information Electronic Medical El t i M di l System (HIS) S t Records (EMRs) Electronic Patient Records (EPRs) Clinical Information Personal Health Computer-Based System (CIS) Records (PHRs) Patient Records (CPRs)44
    • EHR Systems Just l t i d J t electronic documentation? t ti ? History Diag- Treat- ... & PE nosis ments Or do they have other values?45
    • Functions that Should Be Part of EHR Systems • Computerized Medication Order Entry • Computerized Laboratory Order Entry • Computerized Laboratory Results • Physician Notes • Patient Demographics • Problem Lists • Medication Lists • Discharge Summaries • Diagnostic Test Results • Radiologic Reports46 (IOM, 2003; Blumenthal et al, 2006)
    • Computerized Physician Order Entry (CPOE)47
    • Computerized Physician Order Entry (CPOE) Values • No handwriting!!! • Structured data entry: Completeness, clarity, fewer mistakes (?) • No transcription errors! • Entry point for CDSSs • Streamlines workflow, increases efficiency , y48
    • Clinical Decision Support Systems (CDSSs) • The real place where most of the values of health IT can be achieved l f h lth b hi d • Expert systems • Based on artificial intelligence intelligence, machine learning, rules, or statistics • Examples: differential diagnoses, diagnoses treatment options (Shortliffe, 1976)49
    • Clinical Decision Support Systems (CDSSs) • Alerts & reminders • Based on specified logical conditions p • Examples: • Drug-allergy checks • Drug drug interaction checks Drug-drug • Drug-disease checks • Drug-lab checks • Drug-formulary checks g y • Reminders for preventive services or certain actions (e g smoking cessation) (e.g. • Clinical practice guideline integration50
    • Clinical Decision Support Systems (CDSSs) • Evidence-based knowledge sources e g drug Evidence based e.g. database, literature • Simple UI designed to help clinical decision making51
    • A Basic Architecture of A CDSS User U User I t f U Interface Inference Engine Knowledge Patient Other Data Base Data • System states • Rules • Epidemiological/ • Statistical data surveillance data • Literature • Etc. • Etc.52
    • Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION53 From a teaching slide by Don Connelly, 2006
    • Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Abnormal lab Attention highlights Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION54
    • Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Abnormal lab Attention highlights Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION55
    • Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Drug-Allergy Attention Checks Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION56
    • Clinical Decision Support Systems (CDSSs) PATIENT Drug-Drug Perception Interaction CLINICIAN Checks Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION57
    • Clinical Decision Support Systems (CDSSs) PATIENT Perception Clinical CLINICIAN Practice Guideline Attention Reminders Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference DECISION58
    • Clinical Decision Support Systems (CDSSs) PATIENT Perception CLINICIAN Attention Long Term Memory External Memory Working Memory Knowledge Data Knowledge Data Inference Diagnostic/Treatment Expert Systems DECISION59
    • Clinical Decision Support Systems (CDSSs) • CDSS as a replacement or supplement of clinicians? • The demise of the “Greek Oracle” model (Miller & Masarie, 1990) The “Greek Oracle” Model The “Fundamental Theorem”60 (Friedman, 2009)
    • Clinical Decision Support Systems (CDSSs) Some risks • Alert fatigue61
    • Workarounds62
    • Health IT for Medication Safety Ordering g Transcription Dispensing g Administration Automatic Electronic CPOE C O Medication Medication Dispensing Administration Records (e-MAR) Barcoded Medication Barcoded Dispensing Di i Medication Administration63
    • Health Information Exchange (HIE) g ( ) Government Hospital A Hospital B Clinic C Lab L b Patient t H P ti t at Home64
    • 4 Quadrants of Hospital IT p Strategic Business Intelligence g HIE PHRs CDSS Social Media CPOE Administrative Clinical VMI EHRs ERP LIS ADT Word Processor MPI Operational65 (Theera-Ampornpunt [unpublished], 2010-2011)
    • Health Informatics H lhI f i As A Field66
    • Biomedical/Health Informatics • “[T]he field that is concerned with the optimal use of information, often aided by the use of technology, to improve individual health, health care, public health, and biomedical research” (Hersh, 2009) • “[T]he application of the science of information as data plus meaning to problems of biomedical interest” (Bernstam et al, 2010)67
    • DIKW Pyramid Wisdom Knowledge Information Data D t68
    • Task-Oriented View Collection Processing Utilization Communication Storage /Dissemination/ Presentation69
    • M/B/H Informatics As A Field70 (Shortliffe, 2002)
    • M/B/H Informatics and Other Fields Social Sc e ces Sciences Statistics & (Psychology, Sociology, Research Linguistics, Methods Cognitive & Law & Ethics) Medical Decision Sciences & Science Public Health Engineering Management Library Computer & Biomedical/ Science, S i Information Health Information Science Informatics Retrieval, KM And More!71
    • Balanced Focus of Informatics People Techno- Process logy72
    • IT Management M73
    • ความเดิมตอนที่แล้ว... • H lth IT: ของดี Health IT (อาจจะ) มีประโยชน์ (แต่ก็อาจมีโทษ) • บริบท (local contexts) มีความสําคัญ • ต้องมีการบริหารจัดการที่เหมาะสม ตองมการบรหารจดการทเหมาะสม ประเด็็นพิิจารณา • อะไรคือบริบทที่เกียวข้อง? ่ • จะจัดการมันอย่างไร?74
    • Context The current location The tailwind The headwind The past The journey j direction di i The destination The speed The sailor(s) & ( ) The sail people on The boat The sea board75 The sailboat image source: Uwe Kils via http://en.wikipedia.org/wiki/Sailing
    • Direction & Destination รพ.มหาวิทยาลัย 900 เตียง รพ.เอกชน 200 เตีียง Vision เป็นโรงพยาบาลชั้นนําของ Vision เป็นโรงพยาบาล High Tech ภูมภาคเอเชียที่มีความเป็นเลิศใน ภมิภาคเอเชยทมความเปนเลศใน High Touch ชันนําของประเทศ ชนนาของประเทศ ้ ด้านบริการ การศึกษา และวิจัย76
    • “The Sail The Sail” Carr (2004) Carr (2003)77
    • 4 Quadrants of Hospital IT p Strategic Business Intelligence g HIE PHRs CDSS Social Media CPOE Administrative Clinical VMI EHRs ERP LIS ADT Word Processor MPI Operational78 (Theera-Ampornpunt [unpublished], 2010-2011)
    • IT As A Strategic Advantage g g Sustainable Yes competitive advantage Yes Inimitable I i it bl ? Yes Rare ? No Preemptive Yes Non-Substitutable? No advantage Competitive Valuable V l bl ? parity No Competitive No necessity Competitive C titi Resources/ Disadvantage capabilities79 From a teaching slide by Nelson F. Granados, 2006 at University of Minnesota Carlson School of Management
    • “The Sail The Sail” รพ.มหาวิทยาลัย 900 เตียง รพ.เอกชน 200 เตีียง Vision เป็นโรงพยาบาลชั้นนําของ เปนโรงพยาบาลชนนาของ Vision เป็นโรงพยาบาล High Tech เปนโรงพยาบาล ภูมภาคเอเชียที่มีความเป็นเลิศใน ิ High Touch ชันนําของประเทศ ้ ด้านบริการ การศึกษา และวิจัย Current IT Environment Current IT Environment • เป็น รพ.แรกๆ ที่มี HIS ซึ่งพัฒนาเอง • มี MPI, ADT, EHRs, CPOE แต่ยงมี ั และตอยอดจาก MPI, แล ต่อยอดจาก MPI ADT ไปส่ CPOE ไปสู CDSS จํากัด จากด (แต่ยงขาด CDSS) ระบบ HIS เข้ากับ ั • ยังไม่มี Customer Relationship workflow ของ รพ. เป็นอย่างดี Management (CRM) • ปัจจุบัน ระบบ HIS ยังใช้เทคโนโลยี เดียวกับช่วงที่พัฒนาใหม่ๆ (20 ปีก่อน) เปนหลก มการนาเทคโนโลยใหมๆ เป็นหลัก มีการนําเทคโนโลยีใหม่ๆ มา ใช้อย่างช้าๆ80
    • IT As A Strategic Advantage g g Sustainable Yes competitive advantage Yes Inimitable I i it bl ? Yes Rare ? No Preemptive Yes Non-Substitutable? No advantage Competitive Valuable V l bl ? parity No Competitive No necessity Competitive C titi Resources/ Disadvantage capabilities81 From a teaching slide by Nelson F. Granados, 2006 at University of Minnesota Carlson School of Management
    • “The Sailors” The Sailors People Techno- Process logy82
    • “The Sailors” The Sailors รพ.มหาวิทยาลัย 900 เตียง รพ.เอกชน 200 เตีียง • บคลากรมีอายเฉลี่ย 40 ปี บุคลากรมอายุเฉลย ป • บคลากรมีอายเฉลี่ย 37 ปี บุคลากรมอายุเฉลย ป (range 20-65) (range 20-57) • แผนก IT มีทั้งบุคลากรใหม่และทีเคย ่ • แผนก IT เข้มแข็ง เขมแขง พัฒนาระบบ HIS ตั้งแต่แรกเริ่ม • แพทย์ไม่ค่อยมี interaction กับ • แพทย์มีความเป็นตัวของตัวเองสูง, บุคลากรอน, รายไดเปนแรงดงดูดหลก บคลากรอื่น รายได้เป็นแรงดึงดดหลัก มัักทํํางานเอกชนด้้วย, มีี turn-over rate สูง • ผู้บริหารได้รับการยอมรับจากบุคลากร • พยาบาลและวิชาชีพอื่นมักมองว่า พยาบาลและวชาชพอนมกมองวา ทุกวชาชพวามวสยทศนและ ทกวิชาชีพว่ามีวิสัยทัศน์และ แพทย์คออภิสิทธิ์ชน และมีเรื่อง ื บริหารงานได้ดี ถกเถยงกนบอยๆ ถกเถียงกันบ่อยๆ83
    • Context The current location The tailwind The headwind The past The journey j direction di i The destination The speed The sailor(s) & ( ) The sail people on The boat The sea board84 The sailboat image source: Uwe Kils via http://en.wikipedia.org/wiki/Sailing
    • “The Boat” The Boat • Size • Resources • Structures • Work Processes • Facilities/Geograph Facilities/Geography • Etc.85
    • “The Sea The Sea” • T Target customers t t • Local competitiveness • Relationship of hospital to local players • Inter-organizational collaboration g • IT market environment • National/international trend • Regulations • Standard of care • Etc.86
    • SWOT Analysis “The B t” “Th Boat” “The S ” “Th Sea” “The Tailwind” The Tailwind Strengths Opportunities “The Tailwind” The Tailwind “The Headwind” Weaknesses Threats “The Headwind”87
    • IT vs Business88
    • Context The current location The tailwind The headwind The past The journey j direction di i The destination The speed The sailor(s) & ( ) The sail people on The boat The sea board89 The sailboat image source: Uwe Kils via http://en.wikipedia.org/wiki/Sailing
    • Gartner’s Sourcing Life Cycle g y Strategic g Tactical Sourcing Strategy Evaluation and Selection g Alignment g Identification g Organization assessment g Criteria development g Core competencies g Organization fit g Market scan g Selection process g Make-or-buy decisions g Partnership g Risk analysis opportunities Sourcing Contract Management Development g Relationship g Governance model g Performance g Metrics assessment g Payment models g Goals: reach business objectives, efficiency, g Terms and conditions q quality, innovation y, g Provision g Transition for changes90 From a teaching slide by Nelson F. Granados, 2006
    • IT Outsourcing Decision Tree Keep Internal No Is external delivery No reliable and lower cost? Does service offer Yes OUTSOURCE! competitive advantage? titi d t ? Yes Keep Internal91 From a teaching slide by Nelson F. Granados, 2006
    • IT Outsourcing Decision Tree: Ramathibodi s Ramathibodi’s Case External delivery unreliable • Non-Core HIS HIS, External delivery higher cost • ERP maintenance/ongoing customization Keep Internal No Is external delivery No reliable and lower cost? Does service offer Yes OUTSOURCE! competitive advantage? titi d t ? ERP initial implementation, Yes Keep Internal PACS, RIS, PACS RIS Core HIS, CPOE Departmental Strategic advantages systems, • Agility due to local workflow accommodations IT Training • Secondary data utilization (research, QI) • Roadmap to national leader in informatics92
    • Gartner Hype Cycle Image source: Jeremy Kemp via http://en.wikipedia.org/wiki/Hype_cycle93 http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
    • Rogers’ Diffusion of Innovations: Adoption Curve Rogers (2003)94
    • Unified Theory of Acceptance and Use of Technology (UTAUT) Performance Usefulness Expectancy p y Ease of Use Effort Expectancy Behavioral B h i l Use Social Norm Intention Behavior Social & Opinions Influence Facilitating IT Support Conditions Voluntariness Gender Age Experience of Use95 Venkatesh et al. (2003)
    • Adoption Strategies: “The Tipping Point” Version The Th Th Three Rules of Epidemics R l f E id i • The Law of the Few • Connectors Change Agents Opinion Leaders • Mavens Super-Users • Salesmen Champions • The Stickiness Factor Ease of Use • The Power of Context Social Norm & Opinions IT Support Gladwell (2000)96
    • Hospital IT Adoption Success Factors • Communications of project plans & progresses • W kfl Workflow considerations id i • Management support of IT projects • Common visions • Shared commitment • Multidisciplinary user involvement • Project management • Training • Innovativeness • Organizational learning97 Theera-Ampornpunt (2009) [Unpublished]
    • Resources on Change Management Lorenzi & Riley Leviss (Editor) (2004) (2010)98
    • Summary • Healthcare is complex • H lth IT can b Health benefit h lth fit healthcare th through h • Information delivery • Process improvement • Empowering providers & patients • The world is moving toward health IT • Health informatics is related to & relies on the field of IT, but they th are not th same t the • Management of hospital IT is crucial to success • Know your organization (“context”) • Strategic mindset • Project & change management99
    • Final Words... • Don’t forget our real aim... Adoption Use Outcomes100
    • Q&A A... Download Slides D l d Slid SlideShare.net/Nawanan Contacts @Nawanan @ThaiHealthIT ranta@mahidol.ac.th www.tc.umn.edu/~theer002 groups.google.com/group/ThaiHealthIT101
    • References • Ariely D. Predictably irrational: the hidden forces that shape our decisions. New York City  (NY):HarperCollins; 2008. 304 p. • Bernstam EV S i h JW J h B EV, Smith JW, Johnson TR. What is biomedical informatics? J Biomed Inform. 2010  TR Wh i bi di l i f i ? J Bi dI f 2010 Feb;43(1):104‐10. • Blumenthal D. Launching HITECH. N Engl J Med. 2010 Feb 4;362(5):382‐5. • Blumenthal D, DesRoches C D Bl th l D D R h C, Donelan K F i T Jh A K h l R R S R l K, Ferris T, Jha A, Kaushal R, Rao S, Rosenbaum S.  b S Health information technology in the United States: the information base for progress  [Internet]. Princeton (NJ): Robert Wood Johnson Foundation; 2006. • Carr NG. Does IT matter? Information technology and the corrosion of competitive  Carr NG. Does IT matter? Information technology and the corrosion of competitive advantage. Boston (MA):Harvard Business Press;2004. 208 p. • Carr NG. IT doesn’t matter. Harvard Bus Rev. 2003 May 1;81(5):41‐9. • Croskerry P. The importance of cognitive errors in diagnosis and strategies to minimize them.  y p g g g Acad Med. 2003 Aug;78(8):775‐80. 81 p. Available from:  http://www.rwjf.org/files/publications/other/EHRReport0609.pdf • Friedman CP. A "fundamental theorem" of biomedical informatics. J Am Med Inform Assoc.  2009 Apr;16(2):169‐70. • Gladwell M. The Tipping Point: how little things can make a big difference. New York City  (NY):Little Brown;2000. 304 p. • Hersh W. A stimulus to define informatics and health information technology. BMC Med  h i l d fi i f i dh l hi f i h l d Inform Decis Mak. 2009;9:24.102 • Hersh W. Health care information technology: progress and barriers. JAMA. 2004 Nov  10:292(18):2273‐4
    • References • Hsiao C, Beatty PC, Hing ES, Woodwell DA. Electronic medical record/electronic health record  use by office‐based physicians: United States, 2008 and preliminary 2009 [Internet]. 2009  b ff b d h d d l [ ] [cited 2010 Apr 12]; Available from: http://www.cdc.gov/nchs/data/hestat/emr_ehr/ emr_ehr.pdf • Institute of Medicine, Board on Health Care Services, Committee on Data Standards for  Institute of Medicine Board on Health Care Services Committee on Data Standards for Patient Safety. Key Capabilities of an electronic health record system: letter report [Internet].  Washington, DC: National Academy of Sciences;2003.  31 p. Available from: http://www.nap.edu/catalog/10781.html • Institute of Medicine, Committee on Quality of Health Care in America. To err is human:  building a safer health system. Kohn LT, Corrigan JM, Donaldson MS, editors. Washington,  DC: National Academy Press;2000. 287 p. • Institute of Medicine, Committee on Quality of Health Care in America. Crossing the quality  chasm: a new health system for the 21st century. Washington, DC: National Academy Press;  2001. 337 p. • Jha AK DesRoches CM Campbell EG Donelan K Rao SR Ferris TG Shields A Rosenbaum S AK, DesRoches CM, Campbell EG, Donelan K, Rao SR, Ferris TG, Shields A, Rosenbaum S,  Blumenthal D. Use of electronic health records in U.S. hospitals. N Engl J Med.  2009;360(16):1628‐38. • Jha AK, Doolan D, Grandt D, Scott T, Bates DW. The use of health information technology in  , , , , gy seven nations. Int J Med Inform. 2008;77(12):848‐54.103
    • References • Klein JG. Five pitfalls in decisions about diagnosis and prescribing. BMJ. 2005 Apr  2;330(7494):781‐3. • Leviss J (editor). H.I.T. or Miss: lessons learned from health information technology  implementations. Chicago (IL):AHIMA Press;2010. • Lorenzi NM, Riley RT. Managing technological change: organizational aspects of health  informatics. New York City (NY): Springer;2004. i f i N Y k Ci (NY) S i 2004 • Mamede S, van Gog T, van den Berge K, Rikers RM, van Saase JL, van Guldener C, Schmidt  HG. Effect of availability bias and reflective reasoning on diagnostic accuracy among internal  medicine residents. JAMA. 2010 Sep 15:304(11):1198‐203. medicine residents JAMA 2010 Sep 15:304(11):1198‐203 • Miller RA, Masarie FE. The demise of the "Greek Oracle" model for medical diagnostic  systems. Methods Inf Med. 1990 Jan;29(1):1‐2.  • Rogers EM. Diffusion of innovations. 5th ed. New York City (NY): Free Press;2003. 551 p. Rogers EM. Diffusion of innovations. 5th ed. New York City (NY): Free Press;2003. 551 p. • Schoen C, Osborn R, Huynh PT, Doty M, Puegh J, Zapert K. On the front lines of care: primary  care doctors’ office systems, experiences, and views in seven countries. Health Aff (Millwood). 2006;25(6):w555‐71. • Shortliffe EH. JBI status report. Journal of Biomedical Informatics. 2002 Oct;35(5‐6):279‐80. • Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology:  toward a unified view. MIS Quart. 2003 Sep;27(3):425‐78. • Background designs are the property of Geetesh Bajaj. Used with permission. © Copyright,  Geetesh Bajaj. All Rights Reserved.104