SlideShare una empresa de Scribd logo
1 de 94
Presentaciones adaptadas al texto del libro: “ Temas de química (I) para alumnos de ITOP e ICCP” ROCÍO LAPUENTE ARAGÓ Departamento de Ingeniería de la Construcción UNIVERSIDAD DE ALICANTE Tema  2.- Reacciones Químicas. Estequiometría. Disoluciones
REACCIONES QUÍMICAS Cambios físicos Cambios Químicos TRANSFORMACIÓN SUSTANCIAS PURAS No implican cambio de composición Ej Cambio de fase Para llegar a establecer la forma de medir la materia y las relaciones que existen entre reactivos y productos, se aplicó de manera intuitiva el método científico.
Hasta finales del XVIII y principios del XIX  no se sabía casi nada  acerca de la composición de la materia y lo que sucedía cuando reaccionaban. Precisamente en esta época se empiezan a enunciar algunas leyes básicas sobre las transformaciones de la materia que culminan con la Teoría Atómica de Dalton Estas leyes enunciadas por orden cronológico pueden resumirse así:
1789.  Ley de Lavoisier de la conservación  de la masa.  Lavoisier  comprobó que en cualquier reacción química,  1. LEYES PONDERALES. la suma de las masas de los productos que reaccionan la suma de las masas de los productos obtenidos Esto significa que: =
En una reacción química,  la materia no se crea ni se destruye, tan sólo se transforma.  Por ejemplo, si 10 gramos de A se combinan con 20 gramos de B,  se obtienen 30 gramos de A B. Antoine Lavoisier: 1734-1794
+
1799.  Ley de Proust de las proporciones definidas.   Afirma que: Cuando dos elementos se combinan para formar un compuesto,  lo hacen siempre en proporciones de peso fijas y definidas . Joseph Louis   Proust, (1754-1826)
 
Proust vino a nuestro país a impartir clases de química, en Segovia y Madrid.  el amoniaco  siempre tendrá Así, por ejemplo, un 82.25 % de nitrógeno y un 17,25 % de hidrógeno  sea cual sea el método empleado para obtenerlo. La ley de las proporciones definidas constituyó una poderosa arma para los químicos en la búsqueda de la composición.
La ley de Proust  no impide que  dos o más elementos  se unan  en varias proporciones  para formar varios compuestos
1805.  Ley de Dalton de las proporciones múltiples. Cuando dos elementos se combinan para dar más de un compuesto, los pesos de un elemento que se combinan con una cantidad fija del otro, guardan entre si una relación numérica sencilla. Dalton  1766-1844
 
1805.  Ley de Dalton de las proporciones múltiples. agua y peróxido de hidrógeno ambas formadas por los elementos hidrógeno y oxígeno al formar agua: 8.0 g de oxígeno reaccionan con 1.0 g de hidrógeno en el peróxido de hidrógeno, hay 16.0 g de oxígeno por cada 1.0 g de hidrógeno la proporción de la masa de oxígeno por gramo de hidrógeno entre los dos compuestos es de 2:1 Usando la teoría atómica, podemos llegar a la conclusión de que el peróxido de hidrógeno contiene dos veces más átomos de oxígeno por átomo de hidrógeno que el agua.
LOS FILÓSOFOS GRIEGOS SE PREGUNTABAN: ¿Es posible dividir la materia en pedazos cada vez más pequeños, o hay un punto en el que no se puede dividir más? Platón y Aristóteles “ La materia es infinitamente divisible” “ La materia se compone de pequeñas partículas indivisibles “ A esas partículas las llamó ATOMOS FALSO Cierto: Dalton  2000 años después Demócrito
PARTEN ON
TEORÍA ATÓMICA DE DALTON  1808  John Dalton enunció en su famosa teoría atómica basada en las relaciones ponderales antes mencionadas y puede resumirse en los siguientes puntos: 1.-   La materia está compuesta por partículas indivisibles, extremadamente pequeñas, denominadas  atomos . Dalton  1766-1844
TEORÍA ATÓMICA DE DALTON  1808  2.-  Hay diferentes clases de átomos.  Cada clase posee su tamaño y propiedades características. 3.-  Cada clase de átomos corresponde a un elemento distinto.  Todos los átomos de un elemento dado son idénticos.
TEORÍA ATÓMICA DE DALTON  1808  4.-  Los compuestos químicos puros están constituidos por átomos de distintos elementos combinados entre sí, mediante relaciones sencillas. 5.-   Las reacciones químicas consisten en la combinación, separación o reordenación de los átomos. Los átomos permanecen inalterados en cualquier transformación.
Símbolos y fórmulas. A cada una de las clases de átomos de la teoría de Dalton se le asignó un símbolo, con diferentes orígenes: proceden del latín símbolos relacionados con el nombre de un país  Ge germanio Fr francio Po polonio K kalium, potasio Na natrium sodio Au aurum, oro Fe ferrum, hierro C carbono H hidrógeno N nitrógeno
Molécula es la cantidad más pequeña que puede existir de un compuesto que conserva las propiedades de dicho compuesto. imaginémonos 1 cm 3  de agua (H 2 0) que se va dividiendo sucesivamente en mitades una sola molécula de agua  la mínima cantidad de agua posible Si esto pudiera hacerse indefinidamente La molécula de agua podría aún dividirse en átomos de hidrógeno y oxigeno,  pero entonces dejaría de ser agua para convertirse, precisamente, en sus elementos (hidrógeno y oxigeno). LAS MOLÉCULAS DE LOS COMPUESTOS SE REPRESENTAN POR FÓRMULAS.
2.LEYES VOLUMÉTRICAS.  HIPÓTESIS  DE AVOGADRO.
El problema de la asignación de fórmulas fue una cuestión que mantuvo a los científicos preocupados durante largo tiempo El siglo pasado se podían determinar,  por análisis químico,  el porcentaje en peso de los elementos presentes en un compuesto  pero esto no es suficiente para asignar una fórmula, si no se conoce el peso de los átomos de los elementos
se conocían más de diez sustancias gaseosas siglo XIX los experimentos con gases en el laboratorio empezaban a ser frecuentes Humphry Davy (1778-1829) inició la electroquímica. Su fama comenzó cuando experimentó con el gas de la risa cuando trabajaba en Bristol   y se disponía de técnicas para realizar medidas de gases con alguna precisión
” los volúmenes de los gases que reaccionan o se forman en una reacción química, guardan entre si una relación numérica sencilla, siempre que todos los gases se midan  en las mismas condiciones de presión y temperatura”  (Ley de Gay-Lussac). Gay-Lussac tras muchos experimentos llegó a la conclusión  de que: Joseph Louis   Gay-Lussac,  (1778-1850)
Es decir, mediante fórmulas puede escribirse 2 volúmenes de gas Hidrógeno 1 volumen de gas Oxígeno 2 volúmenes de vapor de agua + Y también… 1 volúmen de gas Hidrógeno 1 volumen de gas Cloro 2  volúmenes de Cloruro de hidrógeno + ¿H+Cl ->2HCl? ¿2H+O ->2H  2 O?
La teoría atómica no podía explicar la ley de Gay Lussac de los volúmenes de combinación  Ni ClH, ni H 2 O según Dalton la combinación de un átomo de hidrógeno y uno de oxígeno daba lugar a una partícula de agua de fórmula HO Esta idea que llevó a Dalton a rechazar las conclusiones de Gay Lussac, por inexactas Se debe a Amadeus Avogadro  la reconciliación de estos dos hechos
El italiano Amadeo Avogadro (1811), analizando la ley de Gay-Lussac, buscó una explicación lógica a los resultados de este científico.  Según Avogadro:  ”Volúmenes iguales de gases, medidos en las mismas condiciones de presión y temperatura, debían contener el mismo número de moléculas”.   Este enunciado constituye la famosa  Hipótesis de Avogadro. también sugiere que los gases elementales estaban formados por moléculas diatómicas Amadeo Avogadro,  (1776-1856)
Sabemos que: casi todas las sustancias gaseosas en las condiciones normales del laboratorio son diatómicas. N 2 H 2 O 2 F 2 Con ello, quedan probadas experimentalmente las teorías del célebre químico italiano. Excepto en los gases nobles: las moléculas de los elementos simples están formadas por dos o más átomos del elemento.   átomo de nitrógeno  N   DIFIERE molécula de nitrógeno  N 2
3. Peso atómico, ecuación química y estequiometría
Sobre la materia a mediados del siglo XIX se sabía: La teoría atómica de Dalton La Hipótesis de Avogadro - No permitían asignar fórmulas coherentes a los compuestos - No se había deducido un sistema para calcular los pesos atómicos
4. Concepto de masa atómica
La teoría atómica no podía explicar la ley de Gay Lussac de los volúmenes de combinación  Ni ClH, ni H 2 O según Dalton la combinación de un átomo de hidrógeno y uno de oxígeno daba lugar a una partícula de agua de fórmula HO Esta idea que llevó a Dalton a rechazar las conclusiones de Gay Lussac, por inexactas Se debe a Amadeus Avogadro  la reconciliación de estos dos hechos
El italiano Amadeo Avogadro (1811), analizando la ley de Gay-Lussac, buscó una explicación lógica a los resultados de este científico.  Según Avogadro:  ”Volúmenes iguales de gases, medidos en las mismas condiciones de presión y temperatura, debían contener el mismo número de moléculas”.   Este enunciado constituye la famosa  Hipótesis de Avogadro. también sugiere que los gases elementales estaban formados por moléculas diatómicas Amadeo Avogadro,  (1776-1856)
PERO ¿LA HIPÓTESIS DE AVOGADRO? ” Volúmenes iguales de gases, medidos en las mismas condiciones de presión y temperatura, debían contener el mismo número de moléculas”. ¿Porqué Hipótesis?
- ¿Molécula? - No era conocido -No tenía datos experimentales para apoyar su hipótesis -Era un teórico - No ayudó a su credibilidad -1860 Congreso de Karlsruhe prueba experimentalmente la Ley de Avogadro   -Diferencia entre los átomos y las moléculas -Calcula el valor del número de Avogadro por primera vez - Inicialmente llamado número de Loschmidt .   - Estimaciones no  demasiado exactas.   Determina pesos moleculares  exactos -Base de cálculos químicos: los pesos atómicos y moleculares. -Siglo XIX otros científicos mejoraron en la exactitud del valor del número de Avogadro. CANNIZZARO (1861) LOSCHMIDT  (1875 ) AVOGADRO (1811)
Los científicos XIX eran conscientes de que los átomos de diferentes elementos tienen diferentes masas. Averiguaron , por ejemplo: 100 g de agua contiene 11,1g de hidrógeno y 88,9 g de oxígeno Luego, como  88,9/11,1 = 8  implica que el agua tiene 8 veces más oxígeno que hidrógeno
Cuando se dieron cuenta de que el agua contenía dos átomos de hidrógeno por cada uno de oxígeno concluyeron que la masa del oxígeno debía ser  2x8=16 Al principio se le asignó un valor de 1 ( arbitrariamente ) a la masa del hidrógeno Actualmente se le asigna el valor de 1UMA a 1/12 masa del  12 C http :// perso.wanadoo.es / cpalacio / LeyAvogadro2 . htm Experimento de Cannizaro
 
 
 
 
 
 
0,086 g Helio 0,851 g Argon 0,1010 = Hoy sabemos que: Pat He = 4,0026 Pat Ar = 39,948 4,0026 39,948 0,1001 =
 
 
 
0,086 g Helio 0,688 g Oxígeno 0,125 = Hoy sabemos que: Pat He = 4,0026 Pat O  = 15,9994  4,0026 15,9994 0,250 = Luego el oxígeno  es diatómico 4,0026 31,9988 0,125 =
Es decir, mediante fórmulas puede escribirse O lo que es lo mismo: + H 2   +  Cl 2 2HCl H H Cl Cl H H Cl Cl
2 volúmenes de gas Hidrógeno 1 volumen de gas Oxígeno 2 volúmenes de vapor de agua + + H H H H Y también… H H H H O O O O
Hidrógeno Helio Flúor Sodio 1,0079 uma 4,0026 uma 18,9984 uma 22,9898 uma 1.6736 ·10 -24  g/at 1.0078 g/mol 6.6463 ·10 -24  g/at 4.0024 g/mol 31.632 ·10 -24  g/at 19.048 g/mol 38.1746 ·10 -24  g/at 22.9887g/mol 1uma = 1.6605·10 -24 g 1g = 6.022·10 23  uma El número de Avogadro  tiene un valor de  6.022·10 23   Para asignar las masas atómicas se define la  uma  que es la doceava parte del peso del  12 C. MASA ATÓMICA EN GRAMOS 1uma = 1.6605·10 -24 g/at MOLES EN GRAMOS N A  = 6.022·10 23  at/mol
Los isótopos difieren en el número de neutrones. La masa de un neutrón es 1.0086 uma o 1.0086 g Los sucesivos isótopos de un mismo elemento difieren en aproximadamente 1 uma o g La abundancia en la naturaleza de cada uno de los isótopos de un mismo elemento es diferente Pesos atómicos son un promedio en función de su abundancia. LOS ISÓTOPOS % x C = 100 % x C   · masa = masa promedio 100
ACTUALMENTE LOS PESOS ATÓMICOS Y MOLECULARES SE DEFINEN DE LA SIGUIENTE MANERA: Peso atómico :   Es el número que indica las veces que un átomo de un elemento es más pesado que un doceavo del átomo del isótopo de C 12 . Peso molecular:   Es el número que indica cuántas veces una molécula es más pesada que un doceavo del átomo del isótopo de C 12 .
5. Formulas empíricas y moleculares.  Deducción de formulas.
DEDUCCIÓN DE FORMULAS EMPÍRICAS O MOLECULARES Expresan la clase de átomos en la molécula y su número relativo y su número absoluto  de relación entre ellas C H C 6 H 6
Conocer la composición porcentual Suponemos que la muestra contiene 100g Usar pesos atómicos Calcular  relación molar Fórmula empírica x   un número entero Conocer la fómula empírica Fórmula molecular % en masa de elementos Gramos de cada elemento Moles de cada elemento Fórmula empírica
6.CONCEPTO DE MOL.  Número de Avogadro. El término  mol  proviene del latín  moles , que significa  “una masa”   El término  molécula   es la forma diminutiva y significa  “una masa pequeña”
EL MOL En principio se define mol,  como la cantidad de materia (átomos, moléculas o iones) que contienen 12g de  12 C. Si se toma el carbono como patrón y se le asigna al átomo de carbono un valor de 12,0000 unidades de masa atómica (uma), resulta que:   el hidrógeno tiene una masa atómica de 1,0079 uma,   el helio de 4,0026, el flúor de 18,9984 y el sodio de 22,9898.  En ocasiones se habla de  “peso atómico”  aunque lo correcto es  “masa atómica”.
EL MOL Mediante diversos experimentos científicos se ha determinado que el número de átomos que hay en 12g de  12 C es  6.0221367 ·10 23 Este número recibe el nombre de  número de Avogadro
Avogadro contando el número de moléculas en un mol
un mol contiene  el número de Avogadro ( 6.02·10 23 ) de unidades de materia físicas reales ( átomos, moléculas o iones) El número de Avogadro es tan grande que es difícil imaginarlo.  Si esparciéramos 6.02·10 23  canicas sobre toda la superficie terrestre, ¡formaríamos una capa de casi 5Km de espesor! En definitiva:
UN MOL DE AGUA  (SI EL DIBUJO ESTUVIERA HECHO  CON 6,022 10 -23  DIBUJITOS  DE MOLÉCULAS) UNA MOLÉCULA DE AGUA
7. Leyes de los Gases
La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente, cuando la temperatura es constante.  LEY DE BOYLE Edme Mariotte también llegó a la misma conclusión que Boyle, pero no publicó sus trabajos hasta 1676.  Esta es la razón por la que en muchos libros encontramos esta ley con el nombre de Ley de Boyle y Mariotte. Fue descubierta por Robert Boyle en 1662. El volumen es inversamente proporcional a la presión: • Si la presión aumenta, el volumen disminuye. •Si la presión disminuye, el volumen aumenta.
Lo que Boyle descubrió es que si la cantidad de gas y la temperatura permanecen constantes, el producto de la presión por el volumen siempre tiene el mismo valor. La expresión matemática de esta ley es: (el producto de la presión por el volumen es constante) P V = k
Supongamos que tenemos un cierto volumen de gas V 1  que se encuentra a una presión P 1  al comienzo del experimento.  Si variamos el volumen de gas hasta un nuevo valor V 2 , entonces la presión cambiará a P 2   Otra manera de expresar la ley de Boyle  P 1  V 1  = P 2  V 2   P 1 V 1 P 2 V 2 se cumplirá:
Relación entre la presión y la temperatura de un gas cuando el volumen es constante Fue enunciada por Joseph Louis Gay-Lussac a principios de 1800. Establece la relación entre la temperatura y la presión de un gas cuando el volumen es constante. LEY DE GAY-LUSSAC La presión del gas es directamente proporcional a su temperatura: • Si aumentamos la temperatura, aumentará la presión. •Si disminuimos la temperatura, disminuirá la presión.
Gay-Lussac descubrió que al aumentar la temperatura las moléculas del gas, el cociente entre la presión y la temperatura siempre tenía el mismo valor: (el cociente entre la presión y la temperatura es constante) P T =k
Supongamos que tenemos un gas que se encuentra a una presión P 1  y a una temperatura T 1  al comienzo del experimento.  Si variamos la temperatura hasta un nuevo valor T 2 , entonces la presión cambiará a P 2 , y se cumplirá: Otra manera de expresar la ley de Gay-Lussac Esta ley está expresada en función de la temperatura absoluta.  Las temperaturas han de expresarse en Kelvin. T 1 P 1 T 2 P 2 P 1 T 1 = P 2 T 2
LEY DE LOS GASES IDEALES
 
V= k 3 n  k 2  T  k 1 1/P P V= k 3 n  k 2  T  k 1 1/P  P P V= k 3 n  k 2  T  k 1 P V= n  k 1 k 2 k 3  T
P V = n  k 1 k 2 k 3  T P V = n R  T LEY DE LOS GASES IDEALES
 
Para un mismo número de moles
8. Cálculos Estequiométricos  .
Estequiometría   Stoecheion  Elemento Metron  Medida
Cálculos estequiométricos cantidades de sustancia que reaccionan Los símbolos y las fórmulas sirven al químico para poder esquematizar una reacción química. cantidades de sustancia que se producen 2 moléculas de hidrógeno   Reaccionan con 1 molécula de oxígeno Para dar 2 moléculas de agua 2H 2  +  O 2  2H 2 O reactivos productos
AJUSTE, IGUALACIÓN O “BALANCEO” DE REACCIONES.  En una reacción ni se crean ni se destruyen átomos: números de cada elemento a cada lado de la “flecha”tienen que ser iguales. Si se satisface esta condición se dice que la ecuación está   AJUSTADA. Nunca deben modificarse los subíndices al ajustar una reacción. 1º.- se ajustan los elementos que están en una sola molécula en cada miembro de la reacción.  2 2 C H 2º.- Para completar el ajuste, necesitamos poner un 2 delante del  O 2 CH 4  +  O 2  CO 2  +  H 2 O
Usamos los símbolos (g), (l), (s) y (ac) Para gas, líquido, sólido y disolución acuosa. Cuando se forma un sólido como producto se usa una flecha hacia abajo  , para indicar que precipita.
CÁLCULOS CON FÓRMULAS Y ECUACIONES QUÍMICAS El concepto de  mol  nos permite aprovechar a nivel macroscópico práctico la información cuantitativa contenida en una reacción química ajustada. Normalmente no tendremos los datos de las cantidades de reactivos en moles. Si por ejemplo tenemos los datos en gramos: Gramos de reactivo Moles de reactivo Ecuación ajustada Moles  de producto /Pm reactivo x Pm Producto Gramos de producto
9. Reactivo Limitante
En una reacción química, los reactivos pueden estar o no en la proporción exacta que determinan sus coeficientes estequiométricos.  Ejemplo: tenemos 10 moles de H 2  y 7 moles de O 2  para formar agua. Reactivo limitante : se consume por completo y limita la cantidad de producto que se forma En este caso el reactivo limitante es el H 2 2H 2 (g) + O 2 (g) 2H 2 O(l)
10. Rendimiento
RENDIMIENTO TEÓRICO:  Cantidad de producto que, según los cálculos, se forma cuando reacciona todo el reactivo limitante RENDIMIENTO REAL:  Cantidad de producto que realmente se forma en la reacción. ¿Porqué difieren? - No reacciona todo el reactivo - El reactivo está hidratado - Se den reacciones secundarias no deseadas Rendimiento real Rendimiento teórico x 100 = % RENDIMIENTO Rendimiento porcentual
11. Disoluciones:  modos de expresar la concentración
Composición de las disoluciones -Disolvente (mayor cantidad) - Soluto (menor cantidad) Pueden ser uno o varios CONCENTRACIÓN :  es la cantidad de  soluto  disuelta en un  disolvente . Unidades de concentración -Molaridad. -molalidad. -Fracción molar. -Porcentaje en peso. -Gramos por litro. Físicas Químicas
1.- Molaridad Moles de soluto = Volumen de disolvente  (en litros) M (moles/l) Moles x Pm = g
2.-Molalidad m = Moles de soluto Kilogramo de disolvente (moles/Kg) Moles x Pm = g Densidad = gramos cm 3 (ml) 3.-Fracción molar x = Moles de soluto Moles totales 4.-Tanto por ciento en peso % = Gramos de soluto 100 gramos de disolución 5.-Gramos por litro g/l = Gramos de soluto 1 litro de disolución
Moles de soluto = Volumen de disolución (en litros) M m = Moles de soluto Kilogramo de disolvente x = Moles de soluto Moles totales % = Gramos de soluto gramos de disolución g/l = Gramos de soluto 1 litro de disolución Químicas Físicas x 100
12. Dilución
Partiendo de disoluciones concentradas, se pueden obtener otras menos concentradas por dilución. Número de moles= M xV( litros) M inicial  V inicial  = M final  V final Para ello se toma una parte de la disolución concentrada y se le añade disolvente.   El número de moles de soluto no cambia. Ejemplo: Queremos preparar 250ml 0.10M deCuSO 4 Tenemos CuSO 4  1.0M V inicial = 25ml V inicial = (0.1M)(250ml) 1.0M
VALORACIONES -Método para determinar la concentración de una disolución, utilizando otra disolución de concentración conocida -Entre las especies presentes en estas dos disoluciones debe tener lugar una reacción química de estequiometría conocida. -La valoración finaliza cuando cuando se añade la cantidad estequiométrica del valorante. Para ello se hace uso de los indicadores.( sustancias que cambian de color) -El caso más típico (y que veremos en el laboratorio) es el ácido-base.
(Laboratorio del Alquimista, ca. 1650)   

Más contenido relacionado

La actualidad más candente

Periodicidad química
Periodicidad químicaPeriodicidad química
Periodicidad químicaPaula Ramirez
 
Conclusiones enlace quimico
Conclusiones enlace quimicoConclusiones enlace quimico
Conclusiones enlace quimicoAngel Guerrero
 
Soluciones concentración y solubilidad.
Soluciones  concentración y solubilidad.Soluciones  concentración y solubilidad.
Soluciones concentración y solubilidad.magbriela
 
Reacciones Químicas de Alquenos
Reacciones Químicas de AlquenosReacciones Químicas de Alquenos
Reacciones Químicas de AlquenosUNAM CCH "Oriente"
 
Determinación de fórmulas químicas (empírica y molecular)
Determinación de fórmulas químicas (empírica y molecular)Determinación de fórmulas químicas (empírica y molecular)
Determinación de fórmulas químicas (empírica y molecular)quifinova
 
Ley de gay lussac
Ley de gay lussacLey de gay lussac
Ley de gay lussacFatima OM
 
Estequiometria exposición
Estequiometria exposiciónEstequiometria exposición
Estequiometria exposiciónLuis Salazar
 
Etileno propiedades
Etileno propiedadesEtileno propiedades
Etileno propiedadesblog-quimica
 
Usos industriales de alquinos
Usos industriales de alquinosUsos industriales de alquinos
Usos industriales de alquinosRoger Cuaical
 
Tipos de ruptura de enlaces
Tipos de ruptura de enlacesTipos de ruptura de enlaces
Tipos de ruptura de enlacesfranperera
 
ejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdfejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdfMaryangelRiveros
 
NOMENCLATURA Y FORMULACIÓN DE SALES
NOMENCLATURA Y FORMULACIÓN DE SALES NOMENCLATURA Y FORMULACIÓN DE SALES
NOMENCLATURA Y FORMULACIÓN DE SALES claudia guzman
 
Quimica organica ppt
Quimica organica pptQuimica organica ppt
Quimica organica pptPattypatuga
 
Isomerizacion
IsomerizacionIsomerizacion
Isomerizacionzonymar
 
Solvatación e hidratación
Solvatación e hidrataciónSolvatación e hidratación
Solvatación e hidrataciónmijamija
 

La actualidad más candente (20)

Periodicidad química
Periodicidad químicaPeriodicidad química
Periodicidad química
 
Enlaces quimicos
Enlaces quimicosEnlaces quimicos
Enlaces quimicos
 
Conclusiones enlace quimico
Conclusiones enlace quimicoConclusiones enlace quimico
Conclusiones enlace quimico
 
Presentacion Leyes De Los Gases
Presentacion Leyes De Los GasesPresentacion Leyes De Los Gases
Presentacion Leyes De Los Gases
 
Problemas resueltos-tema6
Problemas resueltos-tema6Problemas resueltos-tema6
Problemas resueltos-tema6
 
Soluciones concentración y solubilidad.
Soluciones  concentración y solubilidad.Soluciones  concentración y solubilidad.
Soluciones concentración y solubilidad.
 
Reacciones Químicas de Alquenos
Reacciones Químicas de AlquenosReacciones Químicas de Alquenos
Reacciones Químicas de Alquenos
 
Determinación de fórmulas químicas (empírica y molecular)
Determinación de fórmulas químicas (empírica y molecular)Determinación de fórmulas químicas (empírica y molecular)
Determinación de fórmulas químicas (empírica y molecular)
 
Fuerzas intermoleculares de atracción
Fuerzas intermoleculares de atracciónFuerzas intermoleculares de atracción
Fuerzas intermoleculares de atracción
 
Ley de gay lussac
Ley de gay lussacLey de gay lussac
Ley de gay lussac
 
Estequiometria exposición
Estequiometria exposiciónEstequiometria exposición
Estequiometria exposición
 
Etileno propiedades
Etileno propiedadesEtileno propiedades
Etileno propiedades
 
Usos industriales de alquinos
Usos industriales de alquinosUsos industriales de alquinos
Usos industriales de alquinos
 
Tipos de ruptura de enlaces
Tipos de ruptura de enlacesTipos de ruptura de enlaces
Tipos de ruptura de enlaces
 
ejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdfejercicios de estequiometria resueltos.pdf
ejercicios de estequiometria resueltos.pdf
 
NOMENCLATURA Y FORMULACIÓN DE SALES
NOMENCLATURA Y FORMULACIÓN DE SALES NOMENCLATURA Y FORMULACIÓN DE SALES
NOMENCLATURA Y FORMULACIÓN DE SALES
 
Química orgánica
Química orgánicaQuímica orgánica
Química orgánica
 
Quimica organica ppt
Quimica organica pptQuimica organica ppt
Quimica organica ppt
 
Isomerizacion
IsomerizacionIsomerizacion
Isomerizacion
 
Solvatación e hidratación
Solvatación e hidrataciónSolvatación e hidratación
Solvatación e hidratación
 

Destacado

16 problemas calculos estequiometricos sol paso a paso
16 problemas calculos estequiometricos sol paso a paso16 problemas calculos estequiometricos sol paso a paso
16 problemas calculos estequiometricos sol paso a pasoRuddy Juan
 
Plásticos y otros materiales
Plásticos y otros materiales Plásticos y otros materiales
Plásticos y otros materiales Ruben_umia
 
Estequiometria ejercicios con soluciones
Estequiometria ejercicios con solucionesEstequiometria ejercicios con soluciones
Estequiometria ejercicios con solucionesmariavarey
 
Disoluciones químicas (parte 1) (1)
Disoluciones químicas (parte 1) (1)Disoluciones químicas (parte 1) (1)
Disoluciones químicas (parte 1) (1)Barahonaa
 
Disolucionesyestequiometria 49
Disolucionesyestequiometria 49Disolucionesyestequiometria 49
Disolucionesyestequiometria 49Roy Marlon
 
Estructura de los materiales
Estructura de los materialesEstructura de los materiales
Estructura de los materialesFer Medina
 
Presentacion materia
Presentacion materiaPresentacion materia
Presentacion materiaclaudia
 
Gases y disoluciones
Gases y disolucionesGases y disoluciones
Gases y disolucionesfqcolindres
 
Unidad ii soluciones y estequiometria
Unidad ii soluciones y estequiometriaUnidad ii soluciones y estequiometria
Unidad ii soluciones y estequiometriaLuis Sarmiento
 
INTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICAS
INTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICASINTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICAS
INTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICASrapha17
 
Trabajo final módulo contemos y estimemos alka seltzer
Trabajo final módulo contemos y estimemos alka seltzerTrabajo final módulo contemos y estimemos alka seltzer
Trabajo final módulo contemos y estimemos alka seltzerWALTER MILLÁN
 
Ejercicios de estadistica tercero eso
Ejercicios de estadistica tercero esoEjercicios de estadistica tercero eso
Ejercicios de estadistica tercero esomatematicasfeijoo
 
Practica 2 preparacion de soluciones porcentuales.
Practica 2 preparacion de soluciones porcentuales.Practica 2 preparacion de soluciones porcentuales.
Practica 2 preparacion de soluciones porcentuales.Bea MenVer
 
Calculos estequiometricos soluciones
Calculos estequiometricos solucionesCalculos estequiometricos soluciones
Calculos estequiometricos solucionesmariavarey
 
factores de conversión, sistema internacional de unidades, teoría atómica de ...
factores de conversión, sistema internacional de unidades, teoría atómica de ...factores de conversión, sistema internacional de unidades, teoría atómica de ...
factores de conversión, sistema internacional de unidades, teoría atómica de ...ricardow111
 

Destacado (20)

16 problemas calculos estequiometricos sol paso a paso
16 problemas calculos estequiometricos sol paso a paso16 problemas calculos estequiometricos sol paso a paso
16 problemas calculos estequiometricos sol paso a paso
 
Plásticos y otros materiales
Plásticos y otros materiales Plásticos y otros materiales
Plásticos y otros materiales
 
Estequiometria ejercicios con soluciones
Estequiometria ejercicios con solucionesEstequiometria ejercicios con soluciones
Estequiometria ejercicios con soluciones
 
Disoluciones químicas (parte 1) (1)
Disoluciones químicas (parte 1) (1)Disoluciones químicas (parte 1) (1)
Disoluciones químicas (parte 1) (1)
 
Disolucionesyestequiometria 49
Disolucionesyestequiometria 49Disolucionesyestequiometria 49
Disolucionesyestequiometria 49
 
Estructura de los materiales
Estructura de los materialesEstructura de los materiales
Estructura de los materiales
 
Presentacion materia
Presentacion materiaPresentacion materia
Presentacion materia
 
Taller quimica 10
Taller quimica 10 Taller quimica 10
Taller quimica 10
 
Gases y disoluciones
Gases y disolucionesGases y disoluciones
Gases y disoluciones
 
Unidad ii soluciones y estequiometria
Unidad ii soluciones y estequiometriaUnidad ii soluciones y estequiometria
Unidad ii soluciones y estequiometria
 
Estructura atómica tercero de ESO
Estructura atómica tercero de ESOEstructura atómica tercero de ESO
Estructura atómica tercero de ESO
 
Estequiometria Ii
Estequiometria IiEstequiometria Ii
Estequiometria Ii
 
Soluciones y estequiometria(2)
Soluciones y estequiometria(2)Soluciones y estequiometria(2)
Soluciones y estequiometria(2)
 
INTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICAS
INTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICASINTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICAS
INTRODUCCION A LA INTERPRETACION DE REACCIONES QUIMICAS
 
Ley De Dalton
Ley De DaltonLey De Dalton
Ley De Dalton
 
Trabajo final módulo contemos y estimemos alka seltzer
Trabajo final módulo contemos y estimemos alka seltzerTrabajo final módulo contemos y estimemos alka seltzer
Trabajo final módulo contemos y estimemos alka seltzer
 
Ejercicios de estadistica tercero eso
Ejercicios de estadistica tercero esoEjercicios de estadistica tercero eso
Ejercicios de estadistica tercero eso
 
Practica 2 preparacion de soluciones porcentuales.
Practica 2 preparacion de soluciones porcentuales.Practica 2 preparacion de soluciones porcentuales.
Practica 2 preparacion de soluciones porcentuales.
 
Calculos estequiometricos soluciones
Calculos estequiometricos solucionesCalculos estequiometricos soluciones
Calculos estequiometricos soluciones
 
factores de conversión, sistema internacional de unidades, teoría atómica de ...
factores de conversión, sistema internacional de unidades, teoría atómica de ...factores de conversión, sistema internacional de unidades, teoría atómica de ...
factores de conversión, sistema internacional de unidades, teoría atómica de ...
 

Similar a Tema 2. reacciones químicas. estequiometria y disoluciones

Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptTema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptOMAR85117
 
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptTema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptUniversidad de Concepcion
 
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptTema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptDavCor1
 
La materia 1bach
La materia 1bachLa materia 1bach
La materia 1bachconchi_daza
 
La materia 1bach
La materia 1bachLa materia 1bach
La materia 1bachconchi_daza
 
Modelo atómico de Dalton
Modelo atómico de DaltonModelo atómico de Dalton
Modelo atómico de Daltonalexismmoreira
 
La ley de la conservación de la masa
La ley de la conservación de la masaLa ley de la conservación de la masa
La ley de la conservación de la masaFernando Carranza
 
Ley de Avogadro y teoría atómica de Dalton
Ley de Avogadro y teoría atómica de DaltonLey de Avogadro y teoría atómica de Dalton
Ley de Avogadro y teoría atómica de DaltonKaren Maldonado
 
MODELO ATOMICO DE JOHN DALTON (1).pptx
MODELO ATOMICO DE JOHN DALTON (1).pptxMODELO ATOMICO DE JOHN DALTON (1).pptx
MODELO ATOMICO DE JOHN DALTON (1).pptxOlgaElias3
 
Evolucion del atomo
Evolucion del atomoEvolucion del atomo
Evolucion del atomoEynar Maure
 
Teoria atomica
Teoria atomicaTeoria atomica
Teoria atomicachukatrop
 
El átomo
El átomoEl átomo
El átomothc1214
 
333333333333333333333
333333333333333333333333333333333333333333
333333333333333333333jimmui
 
333333
333333333333
333333jimmui
 

Similar a Tema 2. reacciones químicas. estequiometria y disoluciones (20)

Tema 2 REACCIONES QUIMICAS, ESTEQUIOMETRIA Y SOLUCIONES
Tema 2   REACCIONES QUIMICAS, ESTEQUIOMETRIA Y SOLUCIONESTema 2   REACCIONES QUIMICAS, ESTEQUIOMETRIA Y SOLUCIONES
Tema 2 REACCIONES QUIMICAS, ESTEQUIOMETRIA Y SOLUCIONES
 
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptTema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
 
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptTema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
 
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.pptTema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
Tema 2.- Reacciones químicas. Estequiometria y Disoluciones.ppt
 
La materia 1bach
La materia 1bachLa materia 1bach
La materia 1bach
 
La materia 1bach
La materia 1bachLa materia 1bach
La materia 1bach
 
Teorias atómicas
Teorias atómicasTeorias atómicas
Teorias atómicas
 
Modelo atómico de Dalton
Modelo atómico de DaltonModelo atómico de Dalton
Modelo atómico de Dalton
 
Daniela quimica
Daniela quimicaDaniela quimica
Daniela quimica
 
La ley de la conservación de la masa
La ley de la conservación de la masaLa ley de la conservación de la masa
La ley de la conservación de la masa
 
Ley de Avogadro y teoría atómica de Dalton
Ley de Avogadro y teoría atómica de DaltonLey de Avogadro y teoría atómica de Dalton
Ley de Avogadro y teoría atómica de Dalton
 
Leyes ponderales
Leyes ponderalesLeyes ponderales
Leyes ponderales
 
MODELO ATOMICO DE JOHN DALTON (1).pptx
MODELO ATOMICO DE JOHN DALTON (1).pptxMODELO ATOMICO DE JOHN DALTON (1).pptx
MODELO ATOMICO DE JOHN DALTON (1).pptx
 
R55815
R55815R55815
R55815
 
Evolucion del atomo
Evolucion del atomoEvolucion del atomo
Evolucion del atomo
 
Teoria atomica
Teoria atomicaTeoria atomica
Teoria atomica
 
El átomo
El átomoEl átomo
El átomo
 
333333333333333333333
333333333333333333333333333333333333333333
333333333333333333333
 
333333
333333333333
333333
 
Amamamamammaa
AmamamamammaaAmamamamammaa
Amamamamammaa
 

Último

estadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicosestadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicosVeritoIlma
 
Tema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdfTema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdfmaryisabelpantojavar
 
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionalesProyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionalesjimmyrocha6
 
AFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdf
AFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdfAFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdf
AFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdfOdallizLucanaJalja1
 
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnicoEl MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnicoTe Cuidamos
 
Pensamiento Lógico - Matemático USB Empresas
Pensamiento Lógico - Matemático USB EmpresasPensamiento Lógico - Matemático USB Empresas
Pensamiento Lógico - Matemático USB Empresasanglunal456
 
PLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASA
PLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASAPLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASA
PLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASAAlexandraSalgado28
 
estadistica funcion distribucion normal.ppt
estadistica funcion distribucion normal.pptestadistica funcion distribucion normal.ppt
estadistica funcion distribucion normal.pptMiguelAngel653470
 
Gastos que no forman parte del Valor en Aduana de la mercadería importada
Gastos que no forman parte del Valor en Aduana de la mercadería importadaGastos que no forman parte del Valor en Aduana de la mercadería importada
Gastos que no forman parte del Valor en Aduana de la mercadería importadaInstituto de Capacitacion Aduanera
 
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURAPRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURAgisellgarcia92
 
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcialBLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial2811436330101
 
Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...
Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...
Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...antonellamujica
 
15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptx15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptxAndreaAlessandraBoli
 
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptxT.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptxLizCarolAmasifuenIba
 
Derechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejorDerechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejorMarcosAlvarezSalinas
 
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptxu1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptxUrabeSj
 
PROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracionPROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracionDayraCastaedababilon
 
CADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptxCADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptxYesseniaGuzman7
 
Administración en nuestra vida cotidiana .pdf
Administración en nuestra vida cotidiana .pdfAdministración en nuestra vida cotidiana .pdf
Administración en nuestra vida cotidiana .pdfec677944
 
Coca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptxCoca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptxJesDavidZeta
 

Último (20)

estadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicosestadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicos
 
Tema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdfTema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdf
 
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionalesProyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
 
AFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdf
AFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdfAFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdf
AFILIACION CAJA NACIONAL DE SALUD WOM 1 .pdf
 
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnicoEl MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
 
Pensamiento Lógico - Matemático USB Empresas
Pensamiento Lógico - Matemático USB EmpresasPensamiento Lógico - Matemático USB Empresas
Pensamiento Lógico - Matemático USB Empresas
 
PLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASA
PLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASAPLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASA
PLANILLA DE CONTROL LIMPIEZA TRAMPA DE GRASA
 
estadistica funcion distribucion normal.ppt
estadistica funcion distribucion normal.pptestadistica funcion distribucion normal.ppt
estadistica funcion distribucion normal.ppt
 
Gastos que no forman parte del Valor en Aduana de la mercadería importada
Gastos que no forman parte del Valor en Aduana de la mercadería importadaGastos que no forman parte del Valor en Aduana de la mercadería importada
Gastos que no forman parte del Valor en Aduana de la mercadería importada
 
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURAPRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
 
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcialBLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
 
Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...
Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...
Mapa Conceptual relacionado con la Gerencia Industrial, su ámbito de aplicaci...
 
15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptx15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptx
 
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptxT.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
 
Derechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejorDerechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejor
 
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptxu1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
 
PROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracionPROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracion
 
CADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptxCADENA DE SUMINISTROS DIAPOSITIVASS.pptx
CADENA DE SUMINISTROS DIAPOSITIVASS.pptx
 
Administración en nuestra vida cotidiana .pdf
Administración en nuestra vida cotidiana .pdfAdministración en nuestra vida cotidiana .pdf
Administración en nuestra vida cotidiana .pdf
 
Coca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptxCoca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptx
 

Tema 2. reacciones químicas. estequiometria y disoluciones

  • 1. Presentaciones adaptadas al texto del libro: “ Temas de química (I) para alumnos de ITOP e ICCP” ROCÍO LAPUENTE ARAGÓ Departamento de Ingeniería de la Construcción UNIVERSIDAD DE ALICANTE Tema 2.- Reacciones Químicas. Estequiometría. Disoluciones
  • 2. REACCIONES QUÍMICAS Cambios físicos Cambios Químicos TRANSFORMACIÓN SUSTANCIAS PURAS No implican cambio de composición Ej Cambio de fase Para llegar a establecer la forma de medir la materia y las relaciones que existen entre reactivos y productos, se aplicó de manera intuitiva el método científico.
  • 3. Hasta finales del XVIII y principios del XIX no se sabía casi nada acerca de la composición de la materia y lo que sucedía cuando reaccionaban. Precisamente en esta época se empiezan a enunciar algunas leyes básicas sobre las transformaciones de la materia que culminan con la Teoría Atómica de Dalton Estas leyes enunciadas por orden cronológico pueden resumirse así:
  • 4. 1789. Ley de Lavoisier de la conservación de la masa. Lavoisier comprobó que en cualquier reacción química, 1. LEYES PONDERALES. la suma de las masas de los productos que reaccionan la suma de las masas de los productos obtenidos Esto significa que: =
  • 5. En una reacción química, la materia no se crea ni se destruye, tan sólo se transforma. Por ejemplo, si 10 gramos de A se combinan con 20 gramos de B, se obtienen 30 gramos de A B. Antoine Lavoisier: 1734-1794
  • 6. +
  • 7. 1799. Ley de Proust de las proporciones definidas. Afirma que: Cuando dos elementos se combinan para formar un compuesto, lo hacen siempre en proporciones de peso fijas y definidas . Joseph Louis Proust, (1754-1826)
  • 8.  
  • 9. Proust vino a nuestro país a impartir clases de química, en Segovia y Madrid. el amoniaco siempre tendrá Así, por ejemplo, un 82.25 % de nitrógeno y un 17,25 % de hidrógeno sea cual sea el método empleado para obtenerlo. La ley de las proporciones definidas constituyó una poderosa arma para los químicos en la búsqueda de la composición.
  • 10. La ley de Proust no impide que dos o más elementos se unan en varias proporciones para formar varios compuestos
  • 11. 1805. Ley de Dalton de las proporciones múltiples. Cuando dos elementos se combinan para dar más de un compuesto, los pesos de un elemento que se combinan con una cantidad fija del otro, guardan entre si una relación numérica sencilla. Dalton 1766-1844
  • 12.  
  • 13. 1805. Ley de Dalton de las proporciones múltiples. agua y peróxido de hidrógeno ambas formadas por los elementos hidrógeno y oxígeno al formar agua: 8.0 g de oxígeno reaccionan con 1.0 g de hidrógeno en el peróxido de hidrógeno, hay 16.0 g de oxígeno por cada 1.0 g de hidrógeno la proporción de la masa de oxígeno por gramo de hidrógeno entre los dos compuestos es de 2:1 Usando la teoría atómica, podemos llegar a la conclusión de que el peróxido de hidrógeno contiene dos veces más átomos de oxígeno por átomo de hidrógeno que el agua.
  • 14. LOS FILÓSOFOS GRIEGOS SE PREGUNTABAN: ¿Es posible dividir la materia en pedazos cada vez más pequeños, o hay un punto en el que no se puede dividir más? Platón y Aristóteles “ La materia es infinitamente divisible” “ La materia se compone de pequeñas partículas indivisibles “ A esas partículas las llamó ATOMOS FALSO Cierto: Dalton 2000 años después Demócrito
  • 16. TEORÍA ATÓMICA DE DALTON 1808 John Dalton enunció en su famosa teoría atómica basada en las relaciones ponderales antes mencionadas y puede resumirse en los siguientes puntos: 1.- La materia está compuesta por partículas indivisibles, extremadamente pequeñas, denominadas atomos . Dalton 1766-1844
  • 17. TEORÍA ATÓMICA DE DALTON 1808 2.- Hay diferentes clases de átomos. Cada clase posee su tamaño y propiedades características. 3.- Cada clase de átomos corresponde a un elemento distinto. Todos los átomos de un elemento dado son idénticos.
  • 18. TEORÍA ATÓMICA DE DALTON 1808 4.- Los compuestos químicos puros están constituidos por átomos de distintos elementos combinados entre sí, mediante relaciones sencillas. 5.- Las reacciones químicas consisten en la combinación, separación o reordenación de los átomos. Los átomos permanecen inalterados en cualquier transformación.
  • 19. Símbolos y fórmulas. A cada una de las clases de átomos de la teoría de Dalton se le asignó un símbolo, con diferentes orígenes: proceden del latín símbolos relacionados con el nombre de un país Ge germanio Fr francio Po polonio K kalium, potasio Na natrium sodio Au aurum, oro Fe ferrum, hierro C carbono H hidrógeno N nitrógeno
  • 20. Molécula es la cantidad más pequeña que puede existir de un compuesto que conserva las propiedades de dicho compuesto. imaginémonos 1 cm 3 de agua (H 2 0) que se va dividiendo sucesivamente en mitades una sola molécula de agua la mínima cantidad de agua posible Si esto pudiera hacerse indefinidamente La molécula de agua podría aún dividirse en átomos de hidrógeno y oxigeno, pero entonces dejaría de ser agua para convertirse, precisamente, en sus elementos (hidrógeno y oxigeno). LAS MOLÉCULAS DE LOS COMPUESTOS SE REPRESENTAN POR FÓRMULAS.
  • 21. 2.LEYES VOLUMÉTRICAS. HIPÓTESIS DE AVOGADRO.
  • 22. El problema de la asignación de fórmulas fue una cuestión que mantuvo a los científicos preocupados durante largo tiempo El siglo pasado se podían determinar, por análisis químico, el porcentaje en peso de los elementos presentes en un compuesto pero esto no es suficiente para asignar una fórmula, si no se conoce el peso de los átomos de los elementos
  • 23. se conocían más de diez sustancias gaseosas siglo XIX los experimentos con gases en el laboratorio empezaban a ser frecuentes Humphry Davy (1778-1829) inició la electroquímica. Su fama comenzó cuando experimentó con el gas de la risa cuando trabajaba en Bristol y se disponía de técnicas para realizar medidas de gases con alguna precisión
  • 24. ” los volúmenes de los gases que reaccionan o se forman en una reacción química, guardan entre si una relación numérica sencilla, siempre que todos los gases se midan en las mismas condiciones de presión y temperatura” (Ley de Gay-Lussac). Gay-Lussac tras muchos experimentos llegó a la conclusión de que: Joseph Louis Gay-Lussac, (1778-1850)
  • 25. Es decir, mediante fórmulas puede escribirse 2 volúmenes de gas Hidrógeno 1 volumen de gas Oxígeno 2 volúmenes de vapor de agua + Y también… 1 volúmen de gas Hidrógeno 1 volumen de gas Cloro 2 volúmenes de Cloruro de hidrógeno + ¿H+Cl ->2HCl? ¿2H+O ->2H 2 O?
  • 26. La teoría atómica no podía explicar la ley de Gay Lussac de los volúmenes de combinación Ni ClH, ni H 2 O según Dalton la combinación de un átomo de hidrógeno y uno de oxígeno daba lugar a una partícula de agua de fórmula HO Esta idea que llevó a Dalton a rechazar las conclusiones de Gay Lussac, por inexactas Se debe a Amadeus Avogadro la reconciliación de estos dos hechos
  • 27. El italiano Amadeo Avogadro (1811), analizando la ley de Gay-Lussac, buscó una explicación lógica a los resultados de este científico. Según Avogadro: ”Volúmenes iguales de gases, medidos en las mismas condiciones de presión y temperatura, debían contener el mismo número de moléculas”. Este enunciado constituye la famosa Hipótesis de Avogadro. también sugiere que los gases elementales estaban formados por moléculas diatómicas Amadeo Avogadro, (1776-1856)
  • 28. Sabemos que: casi todas las sustancias gaseosas en las condiciones normales del laboratorio son diatómicas. N 2 H 2 O 2 F 2 Con ello, quedan probadas experimentalmente las teorías del célebre químico italiano. Excepto en los gases nobles: las moléculas de los elementos simples están formadas por dos o más átomos del elemento. átomo de nitrógeno N DIFIERE molécula de nitrógeno N 2
  • 29. 3. Peso atómico, ecuación química y estequiometría
  • 30. Sobre la materia a mediados del siglo XIX se sabía: La teoría atómica de Dalton La Hipótesis de Avogadro - No permitían asignar fórmulas coherentes a los compuestos - No se había deducido un sistema para calcular los pesos atómicos
  • 31. 4. Concepto de masa atómica
  • 32. La teoría atómica no podía explicar la ley de Gay Lussac de los volúmenes de combinación Ni ClH, ni H 2 O según Dalton la combinación de un átomo de hidrógeno y uno de oxígeno daba lugar a una partícula de agua de fórmula HO Esta idea que llevó a Dalton a rechazar las conclusiones de Gay Lussac, por inexactas Se debe a Amadeus Avogadro la reconciliación de estos dos hechos
  • 33. El italiano Amadeo Avogadro (1811), analizando la ley de Gay-Lussac, buscó una explicación lógica a los resultados de este científico. Según Avogadro: ”Volúmenes iguales de gases, medidos en las mismas condiciones de presión y temperatura, debían contener el mismo número de moléculas”. Este enunciado constituye la famosa Hipótesis de Avogadro. también sugiere que los gases elementales estaban formados por moléculas diatómicas Amadeo Avogadro, (1776-1856)
  • 34. PERO ¿LA HIPÓTESIS DE AVOGADRO? ” Volúmenes iguales de gases, medidos en las mismas condiciones de presión y temperatura, debían contener el mismo número de moléculas”. ¿Porqué Hipótesis?
  • 35. - ¿Molécula? - No era conocido -No tenía datos experimentales para apoyar su hipótesis -Era un teórico - No ayudó a su credibilidad -1860 Congreso de Karlsruhe prueba experimentalmente la Ley de Avogadro -Diferencia entre los átomos y las moléculas -Calcula el valor del número de Avogadro por primera vez - Inicialmente llamado número de Loschmidt . - Estimaciones no demasiado exactas. Determina pesos moleculares exactos -Base de cálculos químicos: los pesos atómicos y moleculares. -Siglo XIX otros científicos mejoraron en la exactitud del valor del número de Avogadro. CANNIZZARO (1861) LOSCHMIDT (1875 ) AVOGADRO (1811)
  • 36. Los científicos XIX eran conscientes de que los átomos de diferentes elementos tienen diferentes masas. Averiguaron , por ejemplo: 100 g de agua contiene 11,1g de hidrógeno y 88,9 g de oxígeno Luego, como 88,9/11,1 = 8 implica que el agua tiene 8 veces más oxígeno que hidrógeno
  • 37. Cuando se dieron cuenta de que el agua contenía dos átomos de hidrógeno por cada uno de oxígeno concluyeron que la masa del oxígeno debía ser 2x8=16 Al principio se le asignó un valor de 1 ( arbitrariamente ) a la masa del hidrógeno Actualmente se le asigna el valor de 1UMA a 1/12 masa del 12 C http :// perso.wanadoo.es / cpalacio / LeyAvogadro2 . htm Experimento de Cannizaro
  • 38.  
  • 39.  
  • 40.  
  • 41.  
  • 42.  
  • 43.  
  • 44. 0,086 g Helio 0,851 g Argon 0,1010 = Hoy sabemos que: Pat He = 4,0026 Pat Ar = 39,948 4,0026 39,948 0,1001 =
  • 45.  
  • 46.  
  • 47.  
  • 48. 0,086 g Helio 0,688 g Oxígeno 0,125 = Hoy sabemos que: Pat He = 4,0026 Pat O = 15,9994 4,0026 15,9994 0,250 = Luego el oxígeno es diatómico 4,0026 31,9988 0,125 =
  • 49. Es decir, mediante fórmulas puede escribirse O lo que es lo mismo: + H 2 + Cl 2 2HCl H H Cl Cl H H Cl Cl
  • 50. 2 volúmenes de gas Hidrógeno 1 volumen de gas Oxígeno 2 volúmenes de vapor de agua + + H H H H Y también… H H H H O O O O
  • 51. Hidrógeno Helio Flúor Sodio 1,0079 uma 4,0026 uma 18,9984 uma 22,9898 uma 1.6736 ·10 -24 g/at 1.0078 g/mol 6.6463 ·10 -24 g/at 4.0024 g/mol 31.632 ·10 -24 g/at 19.048 g/mol 38.1746 ·10 -24 g/at 22.9887g/mol 1uma = 1.6605·10 -24 g 1g = 6.022·10 23 uma El número de Avogadro tiene un valor de 6.022·10 23 Para asignar las masas atómicas se define la uma que es la doceava parte del peso del 12 C. MASA ATÓMICA EN GRAMOS 1uma = 1.6605·10 -24 g/at MOLES EN GRAMOS N A = 6.022·10 23 at/mol
  • 52. Los isótopos difieren en el número de neutrones. La masa de un neutrón es 1.0086 uma o 1.0086 g Los sucesivos isótopos de un mismo elemento difieren en aproximadamente 1 uma o g La abundancia en la naturaleza de cada uno de los isótopos de un mismo elemento es diferente Pesos atómicos son un promedio en función de su abundancia. LOS ISÓTOPOS % x C = 100 % x C · masa = masa promedio 100
  • 53. ACTUALMENTE LOS PESOS ATÓMICOS Y MOLECULARES SE DEFINEN DE LA SIGUIENTE MANERA: Peso atómico : Es el número que indica las veces que un átomo de un elemento es más pesado que un doceavo del átomo del isótopo de C 12 . Peso molecular: Es el número que indica cuántas veces una molécula es más pesada que un doceavo del átomo del isótopo de C 12 .
  • 54. 5. Formulas empíricas y moleculares. Deducción de formulas.
  • 55. DEDUCCIÓN DE FORMULAS EMPÍRICAS O MOLECULARES Expresan la clase de átomos en la molécula y su número relativo y su número absoluto de relación entre ellas C H C 6 H 6
  • 56. Conocer la composición porcentual Suponemos que la muestra contiene 100g Usar pesos atómicos Calcular relación molar Fórmula empírica x un número entero Conocer la fómula empírica Fórmula molecular % en masa de elementos Gramos de cada elemento Moles de cada elemento Fórmula empírica
  • 57. 6.CONCEPTO DE MOL. Número de Avogadro. El término mol proviene del latín moles , que significa “una masa” El término molécula es la forma diminutiva y significa “una masa pequeña”
  • 58. EL MOL En principio se define mol, como la cantidad de materia (átomos, moléculas o iones) que contienen 12g de 12 C. Si se toma el carbono como patrón y se le asigna al átomo de carbono un valor de 12,0000 unidades de masa atómica (uma), resulta que: el hidrógeno tiene una masa atómica de 1,0079 uma, el helio de 4,0026, el flúor de 18,9984 y el sodio de 22,9898. En ocasiones se habla de “peso atómico” aunque lo correcto es “masa atómica”.
  • 59. EL MOL Mediante diversos experimentos científicos se ha determinado que el número de átomos que hay en 12g de 12 C es 6.0221367 ·10 23 Este número recibe el nombre de número de Avogadro
  • 60. Avogadro contando el número de moléculas en un mol
  • 61. un mol contiene el número de Avogadro ( 6.02·10 23 ) de unidades de materia físicas reales ( átomos, moléculas o iones) El número de Avogadro es tan grande que es difícil imaginarlo. Si esparciéramos 6.02·10 23 canicas sobre toda la superficie terrestre, ¡formaríamos una capa de casi 5Km de espesor! En definitiva:
  • 62. UN MOL DE AGUA (SI EL DIBUJO ESTUVIERA HECHO CON 6,022 10 -23 DIBUJITOS DE MOLÉCULAS) UNA MOLÉCULA DE AGUA
  • 63. 7. Leyes de los Gases
  • 64. La ley de Boyle establece que la presión de un gas en un recipiente cerrado es inversamente proporcional al volumen del recipiente, cuando la temperatura es constante. LEY DE BOYLE Edme Mariotte también llegó a la misma conclusión que Boyle, pero no publicó sus trabajos hasta 1676. Esta es la razón por la que en muchos libros encontramos esta ley con el nombre de Ley de Boyle y Mariotte. Fue descubierta por Robert Boyle en 1662. El volumen es inversamente proporcional a la presión: • Si la presión aumenta, el volumen disminuye. •Si la presión disminuye, el volumen aumenta.
  • 65. Lo que Boyle descubrió es que si la cantidad de gas y la temperatura permanecen constantes, el producto de la presión por el volumen siempre tiene el mismo valor. La expresión matemática de esta ley es: (el producto de la presión por el volumen es constante) P V = k
  • 66. Supongamos que tenemos un cierto volumen de gas V 1 que se encuentra a una presión P 1 al comienzo del experimento. Si variamos el volumen de gas hasta un nuevo valor V 2 , entonces la presión cambiará a P 2 Otra manera de expresar la ley de Boyle P 1 V 1 = P 2 V 2 P 1 V 1 P 2 V 2 se cumplirá:
  • 67. Relación entre la presión y la temperatura de un gas cuando el volumen es constante Fue enunciada por Joseph Louis Gay-Lussac a principios de 1800. Establece la relación entre la temperatura y la presión de un gas cuando el volumen es constante. LEY DE GAY-LUSSAC La presión del gas es directamente proporcional a su temperatura: • Si aumentamos la temperatura, aumentará la presión. •Si disminuimos la temperatura, disminuirá la presión.
  • 68. Gay-Lussac descubrió que al aumentar la temperatura las moléculas del gas, el cociente entre la presión y la temperatura siempre tenía el mismo valor: (el cociente entre la presión y la temperatura es constante) P T =k
  • 69. Supongamos que tenemos un gas que se encuentra a una presión P 1 y a una temperatura T 1 al comienzo del experimento. Si variamos la temperatura hasta un nuevo valor T 2 , entonces la presión cambiará a P 2 , y se cumplirá: Otra manera de expresar la ley de Gay-Lussac Esta ley está expresada en función de la temperatura absoluta. Las temperaturas han de expresarse en Kelvin. T 1 P 1 T 2 P 2 P 1 T 1 = P 2 T 2
  • 70. LEY DE LOS GASES IDEALES
  • 71.  
  • 72. V= k 3 n k 2 T k 1 1/P P V= k 3 n k 2 T k 1 1/P P P V= k 3 n k 2 T k 1 P V= n k 1 k 2 k 3 T
  • 73. P V = n k 1 k 2 k 3 T P V = n R T LEY DE LOS GASES IDEALES
  • 74.  
  • 75. Para un mismo número de moles
  • 77. Estequiometría Stoecheion Elemento Metron Medida
  • 78. Cálculos estequiométricos cantidades de sustancia que reaccionan Los símbolos y las fórmulas sirven al químico para poder esquematizar una reacción química. cantidades de sustancia que se producen 2 moléculas de hidrógeno Reaccionan con 1 molécula de oxígeno Para dar 2 moléculas de agua 2H 2 + O 2 2H 2 O reactivos productos
  • 79. AJUSTE, IGUALACIÓN O “BALANCEO” DE REACCIONES. En una reacción ni se crean ni se destruyen átomos: números de cada elemento a cada lado de la “flecha”tienen que ser iguales. Si se satisface esta condición se dice que la ecuación está AJUSTADA. Nunca deben modificarse los subíndices al ajustar una reacción. 1º.- se ajustan los elementos que están en una sola molécula en cada miembro de la reacción. 2 2 C H 2º.- Para completar el ajuste, necesitamos poner un 2 delante del O 2 CH 4 + O 2 CO 2 + H 2 O
  • 80. Usamos los símbolos (g), (l), (s) y (ac) Para gas, líquido, sólido y disolución acuosa. Cuando se forma un sólido como producto se usa una flecha hacia abajo , para indicar que precipita.
  • 81. CÁLCULOS CON FÓRMULAS Y ECUACIONES QUÍMICAS El concepto de mol nos permite aprovechar a nivel macroscópico práctico la información cuantitativa contenida en una reacción química ajustada. Normalmente no tendremos los datos de las cantidades de reactivos en moles. Si por ejemplo tenemos los datos en gramos: Gramos de reactivo Moles de reactivo Ecuación ajustada Moles de producto /Pm reactivo x Pm Producto Gramos de producto
  • 83. En una reacción química, los reactivos pueden estar o no en la proporción exacta que determinan sus coeficientes estequiométricos. Ejemplo: tenemos 10 moles de H 2 y 7 moles de O 2 para formar agua. Reactivo limitante : se consume por completo y limita la cantidad de producto que se forma En este caso el reactivo limitante es el H 2 2H 2 (g) + O 2 (g) 2H 2 O(l)
  • 85. RENDIMIENTO TEÓRICO: Cantidad de producto que, según los cálculos, se forma cuando reacciona todo el reactivo limitante RENDIMIENTO REAL: Cantidad de producto que realmente se forma en la reacción. ¿Porqué difieren? - No reacciona todo el reactivo - El reactivo está hidratado - Se den reacciones secundarias no deseadas Rendimiento real Rendimiento teórico x 100 = % RENDIMIENTO Rendimiento porcentual
  • 86. 11. Disoluciones: modos de expresar la concentración
  • 87. Composición de las disoluciones -Disolvente (mayor cantidad) - Soluto (menor cantidad) Pueden ser uno o varios CONCENTRACIÓN : es la cantidad de soluto disuelta en un disolvente . Unidades de concentración -Molaridad. -molalidad. -Fracción molar. -Porcentaje en peso. -Gramos por litro. Físicas Químicas
  • 88. 1.- Molaridad Moles de soluto = Volumen de disolvente (en litros) M (moles/l) Moles x Pm = g
  • 89. 2.-Molalidad m = Moles de soluto Kilogramo de disolvente (moles/Kg) Moles x Pm = g Densidad = gramos cm 3 (ml) 3.-Fracción molar x = Moles de soluto Moles totales 4.-Tanto por ciento en peso % = Gramos de soluto 100 gramos de disolución 5.-Gramos por litro g/l = Gramos de soluto 1 litro de disolución
  • 90. Moles de soluto = Volumen de disolución (en litros) M m = Moles de soluto Kilogramo de disolvente x = Moles de soluto Moles totales % = Gramos de soluto gramos de disolución g/l = Gramos de soluto 1 litro de disolución Químicas Físicas x 100
  • 92. Partiendo de disoluciones concentradas, se pueden obtener otras menos concentradas por dilución. Número de moles= M xV( litros) M inicial V inicial = M final V final Para ello se toma una parte de la disolución concentrada y se le añade disolvente. El número de moles de soluto no cambia. Ejemplo: Queremos preparar 250ml 0.10M deCuSO 4 Tenemos CuSO 4 1.0M V inicial = 25ml V inicial = (0.1M)(250ml) 1.0M
  • 93. VALORACIONES -Método para determinar la concentración de una disolución, utilizando otra disolución de concentración conocida -Entre las especies presentes en estas dos disoluciones debe tener lugar una reacción química de estequiometría conocida. -La valoración finaliza cuando cuando se añade la cantidad estequiométrica del valorante. Para ello se hace uso de los indicadores.( sustancias que cambian de color) -El caso más típico (y que veremos en el laboratorio) es el ácido-base.