Ácidos nucleicos
Son grandes polímeros formados por la repetición de monómeros denominados nucleótidos,
unidos mediante en...
de ARN reguladores. Ciertos ARN no codificantes, denominados ribozimas, son capaces de catalizar
reacciones químicas como ...
ARN reguladores
Muchos tipos de ARN regulan la expresión génica gracias a que son complementarios de
regiones específicas ...
Un ARN antisentido es la hebra complementaria (no codificadora) de un hebra ARNm
(codificadora). La mayoría inhiben genes,...
Espliceosoma
Los intrones son separados del pre-ARNm durante el proceso conocido como splicing por los
espliceosomas, que ...
La estructura de las proteínas puede jerarquizarse en una serie de niveles, interdependientes.
Estos niveles corresponden ...
empaquetada, de forma que no hay casi espacio libre dentro de la hélice. Todas las cadenas
laterales de los aminoácidos es...
Que son deportes extremos
Son todos aquellos deportes o actividades de ocio, o profesional con algún componente
deportivo ...
Upcoming SlideShare
Loading in …5
×

áCidos nucleicos

899 views
774 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
899
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

áCidos nucleicos

  1. 1. Ácidos nucleicos Son grandes polímeros formados por la repetición de monómeros denominados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas; algunas moléculas de ácidos nucleicos llegan a alcanzar tamaños gigantescos, con millones de nucleótidos encadenados. Los ácidos nucleicos almacenan la información genética de los organismos vivos y son los responsables de la transmisión hereditaria. Existen dos tipos básicos, el ADN y el ARN. Ácido desoxirribonucleico Abreviado como ADN, es un ácido nucleico que contiene instrucciones genéticas usadas en el desarrollo y funcionamiento de todos los organismos vivos conocidos y algunos virus, y es responsable de su transmisión hereditaria. Función de ADN El papel principal de la molécula de ADN es el almacenamiento a largo plazo de información. Muchas veces, el ADN es comparado con un plano o una receta, o un código, ya que contiene las instrucciones necesarias para construir otros componentes de las células, como las proteínas y las moléculas de ARN. Los segmentos de ADN que llevan esta información genética son llamados genes, pero las otras secuencias de ADN tienen propósitos estructurales o toman parte en la regulación del uso de esta información genética. Ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una cadena de ribonucleótidos. Está presente tanto en las células procariotas como en las eucariotas, y es el único material genético de ciertos virus (virus ARN). El ARN celular es lineal y de hebra sencilla, pero en el genoma de algunos virus es de doble hebra. Tipos de ARN El ARN mensajero (ARNm) es el tipo de ARN que lleva la información del ADN a los ribosomas, el lugar de la síntesis de proteínas. La secuencia de nucleótidos del ARNm determina la secuencia de aminoácidos de la proteína. Por ello, el ARNm es denominado ARN codificante. No obstante, muchos ARN no codifican proteínas, y reciben el nombre de ARN no codificantes; se originan a partir de genes propios (genes ARN), o son los intrones rechazados durante el proceso de splicing. Son ARN no codificantes el ARN de transferencia (ARNt) y el ARN ribosómico (ARNr), que son elementos fundamentales en el proceso de traducción, y diversos tipos
  2. 2. de ARN reguladores. Ciertos ARN no codificantes, denominados ribozimas, son capaces de catalizar reacciones químicas como cortar y unir otras moléculas de ARN, o formar enlaces peptídicos entre aminoácidos en el ribosoma durante la síntesis de proteínas. ARN implicados en la síntesis de proteínas Ribosoma 50S mostrando el ARNr (amarillo), las proteínas (azul) y el centro activo, la adenina 2486 (rojo). ARN mensajero El ARN mensajero (ARNm o RNAm) lleva la información sobre la secuencia de aminoácidos de la proteína desde el ADN, lugar en que está inscrita, hasta el ribosoma, lugar en que se sintetizan las proteínas de la célula. Es, por tanto, una molécula intermediaria entre el ADN y la proteína y apelativo de "mensajero" es del todo descriptivo. En eucariotas, el ARNm se sintetiza en el nucleoplasma del núcleo celular y donde es procesado antes de acceder al citosol, donde se hallan los ribosomas, a través de los poros de la envoltura nuclear. ARN de transferencia Los ARN de transferencia (ARNt o tRNA) son cortos polímeros de unos 80 nucleótidos que transfiere un aminoácido específico al polipéptido en crecimiento; se unen a lugares específicos del ribosoma durante la traducción. Tienen un sitio específico para la fijación del aminoácido (extremo 3') y un anticodón formado por un triplete de nucleótidos que se une al codón complementario del ARNm mediante puentes de hidrógeno. ARN ribosómico o ribosomal El ARN ribosomico o ribosomal (ARNr o RNAr) se halla combinado con proteínas para formar los ribosomas, donde representa unas 2/3 partes de los mismos. En procariotas, la subunidad mayor del ribosoma contiene dos moléculas de ARNr y la subunidad menor, una. En los eucariotas, la subunidad mayor contiene tres moléculas de ARNr y la menor, una. En ambos casos, sobre el armazón constituido por los ARNr se asocian proteínas específicas. El ARNr es muy abundante y representa el 80% del ARN hallado en el citoplasma de las células eucariotas. Los ARN ribosómicos son el componente catalítico de los ribosomas; se encargan de crear los enlaces peptídicos entre los aminoácidos del polipéptido en formación durante la síntesis de proteínas; actúan, pues, como ribozimas.
  3. 3. ARN reguladores Muchos tipos de ARN regulan la expresión génica gracias a que son complementarios de regiones específicas del ARNm o de genes del ADN. ARN de interferencia Los ARN interferentes (ARNi o iRNA) son moléculas de ARN que suprimen la expresión de genes específicos mediante mecanismos conocidos globalmente como ribointerferencia o interferencia por ARN. Los ARN interferentes son moléculas pequeñas (de 20 a 25 nucléotidos) que se generan por fragmentación de precursores más largos. Se pueden clasificar en tres grandes grupos: Micro ARN Los micro ARN (miARN o RNAmi) son cadenas cortas de 21 ó 22 nucleótidos hallados en células eucariotas que se generan a partir de precursores específicos codificados en el genoma. Al transcribirse, se pliegan en horquillas intramoleculares y luego se unen a enzimas formando un complejo efector que puede bloquear la traducción del ARNm o acelerar su degradación comenzando por la eliminación enzimática de la cola poli A. ARN interferente pequeño Los ARN interferentes pequeños (ARNip o siARN), formados por 20-25 nucleótidos, se producen con frecuencia por rotura de ARN virales, pero pueden ser también de origen endógeno. Tras la transcripción se ensambla en un complejo proteico denominado RISC (RNA-induced silencing complex) que identifica el ARNm complementario que es cortado en dos mitades que son degradadas por la maquinaria celular, bloquean así la expresión del gen. ARN asociados a Piwi Los ARN asociados a Piwi34 son cadenas de 29-30 nucleótidos, propias de animales; se generan a partir de precursores largos monocatenarios (formados por una sola cadena), en un proceso que es independiente de Drosha y Dicer. Estos ARN pequeños se asocian con una subfamilia de las proteínas "Argonauta" denominada proteínas Piwi. Son activos las células de la línea germinal; se cree que son un sistema defensivo contra los transposones y que juegan algún papel en la gametogénesis. ARN antisentido
  4. 4. Un ARN antisentido es la hebra complementaria (no codificadora) de un hebra ARNm (codificadora). La mayoría inhiben genes, pero unos pocos activan la transcripción. El ARN antisentido se aparea con su ARNm complementario formando una molécula de doble hebra que no puede traducirse y es degradada enzimáticamente. La introducción de un transgen codificante para un ARNm antisentido es una técnica usada para bloquear la expresión de un gen de interés. Un mARN antisentido marcado radioactivamente puede usarse para mostrar el nivel de transcripción de genes en varios tipos de células. Algunos tipos estructurales antisentidos son experimentales, ya que se usan como terapia antisentido. ARN largo no codificante Muchos ARN largos no codificantes (ARNnc largo o long ncARN) regulan la expresión génica en eucariotas;39 uno de ellos es el Xist que recubre uno de los dos cromosomas X en las hembras de los mamíferos inactivándolo (corpúsculo de Barr). Riboswitch Un riboswitch es una parte del ARNm (ácido ribonucleico mensajero) al cual pueden unirse pequeñas moléculas que afectan la actividad del gen.Por tanto, un ARNm que contenga un riboswitch está directamente implicado en la regulación de su propia actividad que depende de la presencia o ausencia de la molécula señalizadora. Tales riboswitchs se hallan en la región no traducida 5' (5'-UTR), situada antes del codón de inicio (AUG), y/o en la región no traducida 3' (3'UTR), también llamada secuencia de arrastre,14 situada entre el codón de terminación (UAG, UAA o UGA) y la cola poli A. ARN con actividad catalítica Transformación de uridina en pseudouridina, una modificación común del ARN. Ribozimas El ARN puede actuar como biocatalizador. Ciertos ARN se asocian a proteínas formando ribonucleoproteínas y se ha comprobado que es la subunidad de ARN la que lleva a cabo las reacciones catalíticas; estos ARN realizan las reacciones in vitro en ausencia de proteína. Se conocen cinco tipos de ribozimas; tres de ellos llevan a cabo reacciones de automodificación, como eliminación de intrones o autocorte, mientras que los otros (ribonucleasa P y ARN ribosómico) actúan sobre substratos distintos.14 Así, la ribonucleasa P corta un ARN precursor en moléculas de ARNt,mientras que el ARN ribosómico realiza el enlace peptídico durante la síntesis proteica ribosomal.
  5. 5. Espliceosoma Los intrones son separados del pre-ARNm durante el proceso conocido como splicing por los espliceosomas, que contienen numerosos ARN pequeños nucleares (ARNpn o snRNA). En otros casos, los propios intrones actúan como ribozimas y se separan a si mismos de los exones. ARN pequeño nucleolar Los ARN pequeños nucleolares (ARNpno o snoRNA), hallados en el nucléolo y en los cuerpos de Cajal, dirigen la modificación de nucleótidos de otros ARN;22 el proceso consiste en transformar alguna de las cuatro bases nitrogenadas típicas (A, C, U, G) en otras. Los ARNpno se asocian con enzimas y los guían apareándose con secuencias específicas del ARN al que modificarán. Los ARNr y los ARNt contienen muchos nucleótidos modificados. ARN mitocondrial La mitocondrias tienen su propio aparato de síntesis proteica, que incluye ARNr (en los ribosomas), ARNt y ARNm. Los ARN mitocondriales (ARNmt o mtARN) representan el 4% del ARN celular total. Son transcritos por una ARN polimerasa mitocondrial específica Las proteínas Son moléculas formadas por cadenas lineales de aminoácidos. El término proteína proviene de la palabra francesa protéine y ésta del griego πρωτεῖος (proteios), que significa 'prominente, de primera calidad'. Por sus propiedades físico-químicas, las proteínas se pueden clasificar en proteínas simples (holoproteidos), que por hidrólisis dan solo aminoácidos o sus derivados; proteínas conjugadas (heteroproteidos), que por hidrólisis dan aminoácidos acompañados de sustancias diversas, y proteínas derivadas, sustancias formadas por desnaturalización y desdoblamiento de las anteriores. Las proteínas son necesarias para la vida, sobre todo por su función plástica (constituyen el 80% del protoplasma deshidratado de toda célula), pero también por sus funciones biorreguladoras (forman parte de las enzimas) y de defensa (los anticuerpos son proteínas). Niveles de estructuración Representación de la estructura proteica a tres niveles: arriba, el primario, compuesto por los aminoácidos; en el centro, el secundario, definido por las estructuras en alfa hélice, beta lámina y semejantes; y abajo el terciario, que detalla todos los aspectos volumétricos.
  6. 6. La estructura de las proteínas puede jerarquizarse en una serie de niveles, interdependientes. Estos niveles corresponden a: Estructura primaria, que corresponde a la secuencia de aminoácidos. Estructura secundaria, que provoca la aparición de motivos estructurales. Estructura terciaria, que define la estructura de las proteínas compuestas por un sólo polipéptido. Estructura cuaternaria, si interviene más de un polipéptido. Estructura primaria La estructura primaria de las proteínas se refiere a la secuencia de aminoácidos, es decir, la combinación lineal de los aminoácidos mediante un tipo de enlace covalente, el enlace peptídico. Los aminoácidos están unidos por enlaces peptídicos siendo una de sus características más importantes la coplanaridad de los radicales constituyentes del enlace. La estructura lineal del péptido definirá en gran medida las propiedades de niveles de organización superiores de la proteína. Este orden es consecuencia de la información del material genético: Cuando se produce la traducción del RNA se obtiene el orden de aminoácidos que van a dar lugar a la proteína. Se puede decir, por tanto, que la estructura primaria de las proteínas no es más que el orden de aminoácidos que la conforman. Estructura secundaria La estructura secundaria de las proteínas es la disposición espacial local del esqueleto proteico, gracias a la formación de puentes de hidrógeno entre los átomos que forman el enlace peptídico, es decir, un tipo de enlace no covalente, sin hacer referencia a la cadena lateral. Existen diferentes tipos de estructura secundaria: - Estructura secundaria ordenada, ( repetitivos donde se encuentran los hélices alfa y cadenas beta, y no repetitivos donde se encuentran los giros beta y comba beta) -Estructura secundaria no ordenada -Estructura secundaria desordenada Los motivos más comunes son la hélice alfa y la beta lámina (Hoja plegada beta). Hélice alfa Los aminoácidos en una hélice α están dispuestos en una estructura helicoidal dextrógira, con unos 3.6 aminoácidos por vuelta. Cada aminoácido supone un giro de unos 100° en la hélice, y los carbonos α de dos aminoácidos contiguos están separados por 1.5Å. La hélice está estrechamente
  7. 7. empaquetada, de forma que no hay casi espacio libre dentro de la hélice. Todas las cadenas laterales de los aminoácidos están dispuestas hacia el exterior de la hélice.6 El grupo amino del aminoácido (n) puede establecer un enlace de hidrógeno con el grupo carbonilo del aminoácido (n+4). De esta forma, cada aminoácido (n) de la hélice forma dos puentes de hidrógeno con su enlace peptídico y el enlace peptídico del aminoácido en (n+4) y en (n-4). En total son enlaces de hidrógeno por vuelta. Esto estabiliza enormemente la hélice. Esta dentro de los niveles de organización de la proteína. Lámina beta La beta lámina se forma por el posicionamiento paralelo de dos cadenas de aminoácidos dentro de la misma proteína, en el que los grupos amino de una de las cadenas forman enlaces de hidrógeno con los grupos carboxilo de la opuesta. Es una estructura muy estable que puede llegar a resultar de una ruptura de los enlaces de hidrógeno durante la formación de la hélice alfa. Las cadenas laterales de esta estructura están posicionados sobre y bajo el plano de las láminas. Dichos sustituyentes no deben ser muy grandes, ni crear un impedimento estérico, ya que se vería afectada la estructura de la lámina. Estructura terciaria Es el modo en que la cadena polipeptídica se pliega en el espacio, es decir, cómo se enrolla una determinada proteína, ya sea globular o fibrosa. Es la disposición de los dominios en el espacio. La estructura terciaria se realiza de manera que los aminoácidos apolares se sitúan hacia el interior y los polares hacia el exterior en medios acuosos. Esto provoca una estabilización por interacciones hidrofóbicas, de fuerzas de van der Waals y de puentes disulfuro1 (covalentes, entre aminoácidos de cisteína convenientemente orientados) y mediante enlaces iónicos. Estructura cuaternaria La hemoglobina es una proteína tetramérica que suele emplearse como ejemplo de proteína con estructura cuaternaria. La estructura cuaternaria deriva de la conjunción de varias cadenas peptídicas que, asociadas, conforman un ente, un multímero, que posee propiedades distintas a la de sus monómeros componentes. Dichas subunidades se asocian entre sí mediante interacciones no covalentes, como pueden ser puentes de hidrógeno, interacciones hidrofóbicas o puentes salinos. Para el caso de una proteína constituida por dos monómeros, un dímero, éste puede ser un homodímero, si los monómeros constituyentes son iguales, o un heterodímero, si no lo son.
  8. 8. Que son deportes extremos Son todos aquellos deportes o actividades de ocio, o profesional con algún componente deportivo que comportan una real o aparente peligrosidad por las condiciones difíciles o extremas en las que se practican. Deportes extremos Deportes extremos en el Aire: Vuelos en globo aerostático conocido también como ballooning; salto o salto con cuerda elástica de puentes o bungee jumping; ala delta o parapente; paramotor nace del parapente y se le adapta un motor en la espalda del piloto, funambulismo o cuerda floja, ski jumping o salto con esquí desde un trampolín y con aterrizaje en una pista preparada, salto de esquí realizada en la montaña, sin un trampolín artificial ni una pista preparada para el aterrizaje o sky flying; paracaidismo deportivo o sky diving, sky surfing paracaidismo deportivo y soaring vuelo sin motor. Deportes extremos en Tierra: Climbing, carreras de aventura, patinaje en línea, motocrós, caving espeleología, extreme motocross - motocrós en circuito de barro, land yachting - carrera de bólidos con ruedas y vela en la arena de la playa, ice yachting - carrera de bólidos con cuchillas y vela en placas de hielo de los lagos, ciclismo de montaña, patinaje de montaña con monopatín por campo abierto, outdoor climbing, skateboarding monopatín, snowboarding - surf sobre nieve, snowshoeing - modalidad parecido al esquí pero con raquetas de nieve sin pistas preparadas, speed biking - ciclismo de montaña sobre nieve, speed skiing - descenso de esquí alpino, steep skiing descenso libre en esquí en terrenos escarpados, street luge - descenso en cuestas de calles urbanas dentro de un bólido, canoning - descenso por las paredes de cañones. Deportes extremos en el agua: Air chair - esquí acuático la tabla se asienta sobre un soporte que la hace estar en el aire, barefoot water skiing - esquí acuático el cuerpo y los pies están en contacto con el agua, boardsailing - patín de vela o tabla de vela o winsurf, free diving - buceo sin equipo de respiración, jetskiing - moto de agua, open water swimming - cruce de ríos, puertos o zonas de mar nadando, powerboat racing - carreras motonáuticas, carreras con vela, scuba diving inmersión en agua, pesca submarina, speed sailing - navegación rápida, surfing – tabla sobre las olas que rompen a su paso, rafting - descenso en ríos, trifoiling - actividad en embarcación de dos velas para mayor velocidad, wakeboarding - esquí acuático con piruetas con una tabla de surf.

×