Your SlideShare is downloading. ×
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.


Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply



Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

No notes for slide
  • This powerpoint compiled by the Education Staff at the Lunar and Planetary Institute Image from This picture of the Earth and Moon in a single frame, the first of its kind ever taken by a spacecraft, was recorded September 18, 1977, by NASAs Voyager 1 when it was 11.66 million km (7.25 million miles) from Earth. The moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken.
  • We highly recommend doing Earth and Moon statistics with workshop participants before doing this powerpoint, if you intend to discuss the reason for phases or eclipses.
  • Images from In some states, young elementary students may be required in their science standards to observe the changing patterns in the Moon’s appearance. Making observations part of the classroom assignments is a fundamental part of this; the students can bring in drawings of the Moon’s appearance on paper or on paper plates, and they can be placed on the wall over a period of 1-2 months. Students can also make phases out of Oreo cookies.
  • It is not appropriate for very young students to try to master the reason for phases; they often do not have the ability to imagine the three-dimensional nature of this. Many adults have fundamental misconceptions regarding the reason for the Moon’s phases. We conduct an activity with golfballs and blacklights in our workshop here, allowing participants to see “phases”.
  • From Full Moon rises as the Sun sets. The Full Moon is in mid-sky at Midnight. Full Moon sets as the Sun rises. Full Moon cannot be seen during the day.
  • Also from StarChild:
  • Only after phases have been mastered should you try to teach the reason for eclipses; otherwise, students will often assume that the reason for the Moon’s phases is the Earth’s shadow. To understand why we have eclipses, we use the golfballs and blacklights, along with an embroidery hoop to model out the changing intersection of the Moon’s orbit with the ecliptic, as the Earth goes around the Sun.
  • Additional details are at
  • Images from Fred Espanak and may be found at
  • Information at
  • Diagram from Fred Espenak, may be found along with lots of good information at
  • Diagram by Fred Espenak and more information may be found at
  • From
  • Diagram from Fred Espenak, may be found along with information at
  • From; photos taken by Fred Espenak
  • Information at
  • It's not a question of mass, but of energy! The tidal force exerted by the Moon on the Earth causes the oceans to bulge. The Earth rotates about its axis faster than the Moon revolves around the Earth, and this rapid rotation carries the tidal bulge of the oceans forward of the Moon in its orbit. So the tidal bulge on the Earth is always slightly ahead of the Moon's own position. This bulge is continuously tugging the Moon forward, increasing the Moon's total energy. Imagine a cowboy's lasso. As the cowboy spins the lasso faster and faster (increasing its total energy), the loop gets wider. The same thing essentially happens to the Moon. The tugging of the Earth's bulge lifts it into a wider orbit around the Earth.
  • Transcript

    • 1. Eclipses and Lunar PhasesBy the Lunar and Planetary Institute For use in teacher workshops
    • 2. Preliminary TopicsBefore students can understand the reason for phases, they need to understand:• The Moon orbits the Earth Ecliptic plane• The Moon orbit at an angle with respect to Moon’s orbital plane the Earth’s orbit around the Sun• The Moon doesn’t shine on its own; it reflects sunlight• The scale of the Moon and Earth’s sizes and distancePlease go through Earth and Moon statistics before trying to cover the reason for phases or eclipses.
    • 3. Phases: Observing and Identifying New (couple days) Waxing Crescent (several days) 1st Quarter Waxing Gibbous (several days) Full Waning Gibbous (several days) 3rd Quarter Waning Crescent (several days) New
    • 4. Phases--Causes• The Sun shines on the Moon. – When the sunlight reflects off the Moon’s far side, we call it a New Moon – When the sunlight reflects off on the Moon’s near side, we call it a Full Moon – Between New and Full, we see parts of the daytime side of the Moon. Golfball and Blacklight Activity
    • 5. Please do NOT use this to teach phases; use to test for comprehension
    • 6.
    • 7. Eclipses• The Sun and Moon occasionally line up so that we have an eclipse. – These eclipses happen every year – To see a solar eclipse, you need to be on a particular part of the Earth
    • 8. When the Earth’s shadow covers the Moon, we have a lunar eclipse
    • 9. Three types of Lunar Eclipses• Penumbral lunar eclipse—the Moon only passes through the penumbra of Earth’s shadow• Partial lunar eclipse—part of the Moon passes through the umbra of Earth’s shadow• Total lunar eclipse—the entire Moon passes through the umbra of Earth’s shadow• Who on Earth will be able to see a lunar eclipse?Anyone who can see the Moon (anyone who is onthe nighttime side of the Earth during the eclipse)
    • 10. Images from Fred Espenak
    • 11. Why is the Moon red during an eclipse?• The Earth’s atmosphere filters some sunlight and allows it to reach the Moon’s surface• The blue light is removed—scattered down to make a blue sky over those in daytime• Remaining light is red or orange• Some of this remaining light is bent or refracted so that a small fraction of it reaches the Moon• Exact appearance depends on dust and clouds in the Earth’s atmosphere
    • 12. Upcoming Lunar Eclipses
    • 13. Solar Eclipses• When the Moon’s shadow covers part of the Earth• Only happens at New Moon• Three types: Annular, Partial, and Total
    • 14. Total Solar Eclipse• Observers in the “umbra” shadow see a total eclipse (safe to view the Sun); can see the corona• Those in “penumbra” see a partial eclipse—not safe to look directly at Sun• Only lasts a few minutes• Path of Totality about 10,000 miles long, only 100 miles wide
    • 15. Photo of a Total Eclipse
    • 16. Annular Solar Eclipse• When the Moon is too far to completely cover the Sun—the umbra doesn’t reach the Earth• Sun appears as a donut around the Moon
    • 17. Photos of an Annular Eclipse; photos taken by Fred Espenak
    • 18. Upcoming Solar EclipsesInsert upcoming Solar Eclipse dates• Next Total Solar Eclipse in USA—August 21, 2017
    • 19. Tides• The Moon’s gravity tugs on the Earth. – It pulls the most on the part of Earth closest, which raises the atmosphere, the oceans, and even the rocks (a little) – It pulls the least on the part of Earth that’s farthest, which allows the oceans and atmosphere to be further from the Moon (and higher) – The Sun’s gravity does the same thing, but to a lesser extent