Your SlideShare is downloading. ×
  • Like
Early detection of highly pathogenic viral infections
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Early detection of highly pathogenic viral infections

  • 298 views
Published

My qualifying exam presentation

My qualifying exam presentation

Published in Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
298
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
3
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Early Detection ofHighly PathogenicViral InfectionsIgnacio Sanchez CaballeroWednesday, May 1, 13
  • 2. InfectionWednesday, May 1, 13
  • 3. ViremiaInfectionWednesday, May 1, 13
  • 4. ViremiaInfectionTranscriptional changesWednesday, May 1, 13
  • 5. LassaMarburg171 2 3 4 5 6 7 8 9 10 11 1204 6 3 6 315 3 3 3 3 3Days post-exposureNumber ofSamplesWednesday, May 1, 13
  • 6.               Lassa MarburgSamples taken at the same time have similar gene expression valuesWednesday, May 1, 13
  • 7.             CombinedSamples taken at the same time have similar gene expression valuesWednesday, May 1, 13
  • 8. 30HighexpressionLowexpressionDays post-infectionWednesday, May 1, 13
  • 9. No changeIncreasein expressionDecreasein expression30HighexpressionLowexpressionDays post-infectionWednesday, May 1, 13
  • 10. No changeIncreasein expressionDecreasein expressionProbablyrandomProbably significant30HighexpressionLowexpressionDays post-infectionWednesday, May 1, 13
  • 11. No changeIncreasein expressionDecreasein expressionProbablyrandomProbably significant30HighexpressionLowexpressionDays post-infectionSignificant high magnitude changeWednesday, May 1, 13
  • 12. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantSignificant high magnitude change30Wednesday, May 1, 13
  • 13. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantNot significant high magnitude change30Wednesday, May 1, 13
  • 14. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantNot significant high magnitude change30Wednesday, May 1, 13
  • 15. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantSignificant low magnitude change30Wednesday, May 1, 13
  • 16. No changeIncreasein expressionDecreasein expressionHighexpressionLowexpressionDays post-infectionProbablyrandomProbably significantSignificant low magnitude change30Wednesday, May 1, 13
  • 17. A subset of probes is differentially expressed 3 days post-exposureWednesday, May 1, 13
  • 18. A subset of probes is differentially expressed 3 days post-exposureWednesday, May 1, 13
  • 19.     Wednesday, May 1, 13
  • 20.         Wednesday, May 1, 13
  • 21.             Wednesday, May 1, 13
  • 22. LassaMarburg41 2 3 4 5 6 7 8 9 10 11 12021Days post-exposureNumber ofSamples1Test data setWednesday, May 1, 13
  • 23. LassaMarburg41 2 3 4 5 6 7 8 9 10 11 12021Days post-exposureNumber ofSamples1 ✖Test data setWednesday, May 1, 13
  • 24. Aim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Wednesday, May 1, 13
  • 25. Aim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  • 26. Validate the current set of biomarkers using qPCRAim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  • 27. Validate the current set of biomarkers using qPCRCompare the differences in using sequencing to measure gene expressionAim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  • 28. Validate the current set of biomarkers using qPCRCompare the differences in using sequencing to measure gene expressionIncorporate additional viruses to the analysisAim 1: Early detection of highly pathogenic viral infectionsCompare the early transcriptional response of Lassa and Marburg✓Identify a set of candidate biomarker genes✓Wednesday, May 1, 13
  • 29. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Wednesday, May 1, 13
  • 30. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Make generating a dynamic plot as easy as a static oneWednesday, May 1, 13
  • 31. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Make generating a dynamic plot as easy as a static oneAim 3: Experimental trainingDevelop core skills in experimental virologyWednesday, May 1, 13
  • 32. Aim 2: Visualization of complex biological dataDevelop a software tool to easily generate interactive plots✓Make generating a dynamic plot as easy as a static oneAim 3: Experimental trainingDevelop core skills in experimental virologyDesign and carry out experiments to determine viral andhost gene functionWednesday, May 1, 13